Informatics and Applications
2024, Volume 18, Issue 3, pp 45-51
TOWARDS A DEFINITION OF A BUSY PERIOD UNDER NONLOCAL DESCRIPTION OF INPUT FLOWS
Abstract
In course of a probabilistic modeling and analysis of complex controlled queueing systems with several
conflicting input flows, in a series of papers, an approach was successfully applied, one of its features being
a nonlocal description of various system building blocks. In this description, some information about true arrival
and leave times of customers is lost. It leads to difficulties in defining a busy period but that is one of classic
performance metrics for an operating queueing system. In this paper, a controlled queuing system busy period
definition is based on selecting those observation instants when queues reach zero level. A cyclic service algorithm
with fixed switching times as an example using a martingale technique and effective computational formulas are
obtained for the mathematical expectation of busy periods related to individual queues.
[+] References (14)
- Ivchenko, G. I., V. A. Kashtanov, and I.N. Kovalenko.
2012. Teoriya massovogo obsluzhivaniya [Queueing theory].
2nd ed.Moscow: Librokom. 304 p.
- Bruneel, H., and B. Kim. 1993. Discrete-time models for
communication systems including ATM. Norwell: Kluwer
Academic Publs. Vol. 205. 210 p.
- Alfa, A. S. 2016. Applied discrete-time queues. 2nd ed.New
York, NY: Springer-Verlag. 400 p.
- Pechinkin, A. V., and R. V. Razumchik. 2018. Sistemy
massovogo obsluzhivaniya v diskretnom vremeni [Discrete
time queuing systems]. Moscow: Fizmatlit. 432 p.
- Gergely, T., and T. L. Torok. 1974. On the busy period
of discrete-time queues. J. Appl. Probab. 11(4):853857.
doi: 10.2307/3212571.
- Chaudhry, M. L., and Y.Q. Zhao. 1994. First-passagetime
and busy-period distributions of discrete-time
Markovian queues: Geom(n)/Geom(n)/1/N. Queueing
Syst. 18:526. doi: 10.1007/BF01158772.
- Foss, S., and A. Sapozhnikov. 2004. On the existence of
moments for the busy period in a single-server queue.
Math. Oper. Res. 29(3):592601. doi: 10.1287/moor.
1030.0074.
- Brown, G.B. 2021. Busy periods of discrete-time queues
using the Lagrange implicit function theorem. Oper. Res.
Lett. 49(5):650654. doi: 10.1016/j.orl.2021.06.014.
- Fedotkin, M.A. 1975. Set-theoretic approach in analyzing
discrete nonlinear queuing systems. Autom. Control
Comp. S. 9(2):5054.
- Fedotkin, M.A. 1978. Nepolnoe opisanie kvaziregeneriruyushchikh
vkhodnykh potokov neodnorodnykh trebovaniy
i transportnye potoki [Incomplete description of
quasi-regenerating input flows of nonhomogeneous customers
and transport flows]. 4-e Vsesoyuznoe soveshchanie
po statisticheskim metodam teorii upravleniya [4th All-
Union Meeting on Statistical Methods of Control Theory].
Moscow: Nauka. 234236.
- Fedotkin, M.A. 1981. Nepolnoe opisanie potokov
neodnorodnykh trebovaniy [Incomplete description of
flows of inhomogeneous customers]. Teoriya massovogo
obsluzhivaniya [Queueing theory]. Moscow: MGU
VNIISI. 113118.
- Baccelli, F., and A.M. Makowski. 1985. Direct martingale
argument for stability: TheM/G/1 case. Syst. Control
Lett. 6(3):181186. doi: 10.1016/0167-6911(85)90038-6.
- Baccelli, F., and A.M. Makowski. 1989. Dynamic, transient
and stationary behavior of the M/GI/1 queue via
martingales. Ann. Probab. 17(4):16911699.
- Klimenok, V. L. 2001. On the modification of Rouches
theorem for the queueing theory problems. Queueing Syst.
38:431434. doi: 10.1023/A:1010999928701.
[+] About this article
Title
TOWARDS A DEFINITION OF A BUSY PERIOD UNDER NONLOCAL DESCRIPTION OF INPUT FLOWS
Journal
Informatics and Applications
2024, Volume 18, Issue 3, pp 45-51
Cover Date
2024-09-20
DOI
10.14357/19922264240306
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
controlled queueing system; nonlocal description of blocks; nonordinary Poisson flows; cyclic service algorithm; busy period; multivariate denumerable Markov chain; martingale; generalized Rouche. s theorem; Lagrange interpolation polynomial
Authors
A. V. Zorine
Author Affiliations
National Research Lobachevsky State University of Nizhny Novgorod, 23 Prosp. Gagarina, Nizhni Novgorod 603022, Russian Federation
|