Informatics and Applications
2024, Volume 18, Issue 2, pp 32-39
ASSESSING THE CHARACTERISTICS OF 5G/6G "NEW RADIO" SYSTEMS WITH USER'S MACRO- AND MICROMOBILITY
- D. Yu. Ostrikova
- E. S. Golos
- V. A. Beschastnyi
- E. A. Machnev
- V. S. Shorgin
- Yu. V. Gaidamaka
Abstract
The performance of 5G/6G cellular "new radio" systems is typically evaluated using static user location and perfectly directional antennas which are justified in the case of regular synchronisation between the user equipment (UE) and the base station (BS). However, in the case of high energy-efficient UEs with limited RedCap functionality, BS is less likely to get information about the quality of the signal received by the device which changes when the UE moves. This leads to the need to investigate the dynamics of the performance indicators of systems with RedCap UEs over time. In the paper, tools of stochastic geometry and random walk theory are used to analyze the spectral efficiency depending on the distance between the BS and the UE and the directionality of the UE antenna at a random moment of time. A numerical experiment has shown that macromobility has a significant impact on the spectral efficiency, the impact of micromobility is smaller and appears only at short time intervals, while the size of the phased antenna array on the BS side practically does not affect the obtained result.
[+] References (18)
- Holma, H., A. Toskala, and T. Nakamura. 2020. 5G technology: 3GPP new radio. New York, NY: John Wiley & Sons. 536 p.
- Jiang, W, B. Han, M.A. Habibi, and H. D. Schotten. 2021. The road towards 6G: A comprehensive survey. IEEE Open J. Communications Society 2:334-366. doi: 10.1109/OJCOMS.2021.3057679.
- Saad, W., M. Bennis, and M. Chen. 2019. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Network 34(3):134-142. doi: 10.1109/MNET.001.1900287.
- Zhang, J., X. Ge, Q. Li, M. Guizani, and Y. Zhang. 2016. 5G millimeter-wave antenna array: Design and challenges. IEEE Wirel. Commun. 24(2):106-112. doi: 10.1109/MWC.2016.1400374RP.
- Guo, Y. J., and R. W Ziolkowski. 2021. Advanced antenna array engineering for 6G and beyond wireless communications. Hoboken, NJ: John Wiley & Sons. 316 p.
- 3GPP. 2023. NR; Physical layer; General description (Release 18). 3GPP TS 38.201 V18.0.0.
- 3GPP 2021. Study on support of reduced capability NR devices (Release 17): Technical Specification 38.875 V17.0.0. 136 p. Available at: https://www.3gpp.org/ftp/ Specs/archive/38_series/38.875/38875-h00.zip (accessed May 17, 2024).
- Stepanov, N. V., D. Moltchanov, V. Begishev, A. Turlikov, and Y. Koucheryavy. 2021. Statistical analysis and modeling of user micromobility for THz cellular communications. IEEE T. Veh. Technol. 71(1):725-738. doi: 10.1109/TVT.2021.3124870.
- Moltchanov, D., Y. Gaidamaka, D. Ostrikova, V. Beschastnyi, Y. Koucheryavy, and K. Samouylov. 2021. Ergodic outage and capacity of terahertz systems under micromobility and blockage impairments. IEEET. Wirel. Commun. 21(5):3024-3039. doi: 10.1109/ TWC.2021.3117583.
- Haenggi, M. 2012. Stochastic geometry for wireless networks. Cambridge, U.K.: Cambridge University Press. 298 p.
- Petrov, V., M. Komarov, D. Moltchanov, J. M. Jornet, and Y Koucheryavy. 2017. Interference and SINR in millimeter wave and terahertz communication systems with blocking and directional antennas. IEEE T. Wirel. Commun. 16(3):1791-1808. doi: 10.1109/TWC.2017.2654351.
- Gorbunova, A. V., V. A. Naumov, Yu. V. Gaydamaka, and
K. E. Samuylov. 2018. Resursnye sistemy massovogo obsluzhivaniya kak modeli besprovodnykh sistem svyazi [Resource queuing systems as models of wireless communication systems]. Informatika i ee Primeneniya - Inform. Appl. 12(3):48-55. doi: 10.14357/19922264180307. EDN: YAMDIL.
- Kovalchukov, R., D. Moltchanov, Y. Gaidamaka, and E. Bobrikova. 2019. An accurate approximation of resource request distributions in millimeter wave 3GPP new radio systems. Internet of things, smart spaces, and next generation networks and systems. Eds. O. Galinina, S. Andreev, S. Balandin, and Y. Koucheryavy. Lecture notes in computer science ser. Cham: Springer. 11660:572-585. doi: 10.1007/978-3-030-30859-9-50.
- Beschastnyi, V. A., E. S. Golos, D. Yu. Ostrikova, E.A. Machnev, V. S. Shorgin, and Yu. V. Gaidamaka. 2023. Analiz sovmestnogo ispol'zovaniya strategiy energosberezheniya dlya ustroystv 5G s ogranichennym funktsionalom [Analysis of joint usage of energy conservation strategies for 5G devices with reduced capability]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 33(4):69-81. doi: 10.14357/08696527230407. EDN: KATMLB.
- Rappaport, T S. 2024. Wireless communications: Principles and practice. 2nd ed. Cambridge, U.K.: Cambridge University Press. 708 p. doi: 10.1017/9781009489843.
- Risken, H. 1996. Fokker-Planckequation. Springer. 472p.
- 3GPP. 2022. Universal terrestrial radio access (UTRA) and evolved universal terrestrial radio access (E-UTRA); Verification of radiated multi-antenna reception performance ofUser Equipment (UE). 3GPPTR37.977V17.0.0 Release 17.
- Chukhno, O., N. Chukhno, O. Galinina, S. Andreev, Y. Gaidamaka, K. Samouylov, and G. Araniti. 2022. A holistic assessment of directional deafness in mmWave-based
distributed 3D networks. IEEE T. Wirel. Commun. 21(9):7491–7505. doi: 10.1109/TWC.2022.3159086.
[+] About this article
Title
ASSESSING THE CHARACTERISTICS OF 5G/6G "NEW RADIO" SYSTEMS WITH USER'S MACRO- AND MICROMOBILITY
Journal
Informatics and Applications
2024, Volume 18, Issue 2, pp 32-39
Cover Date
2024-06-20
DOI
10.14357/19922264240205
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
5G new radio; mmWave; sub-THz; micromobility; macromobility; spectral efficiency
Authors
D. Yu. Ostrikova , E. S. Golos , V. A. Beschastnyi , E. A. Machnev , V. S. Shorgin , and Yu. V. Gaidamaka ,
Author Affiliations
RUDN University, 6 Miklukho-Maklaya Str., Moscow 117198, Russian Federation
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|