Informatics and Applications
2024, Volume 18, Issue 1, pp 92-99
ANALYSIS OF APPROACHES TO DEFINING FUZZY RESOLVENT
- T. M. Ledeneva
- M. V. Leshchinskaya
Abstract
The article presents the results of a study concerning various definitions of the resolvent in fuzzy logic. Conditions are defined under which the Lee resolvent is a significant logical consequence in the case of the classical definition of fuzzy logical connectives. It is shown that when using triangular norms and conorms for their formalization, it is impossible to obtain a logically significant Lee resolvent. However, if the triangular conorm is defined as max, then the Lee resolvent exists for any triangular norm. Conditions are defined under which the Mukaidano resolvent is a significant logical consequence for classical min and max operations. When using triangular norms and conorms other than classical ones, further research is required. An illustrative example is provided demonstrating the process of constructing the Mukaidano resolvent.
[+] References (20)
- Robinson, J. A. 1965. A machine-oriented logic based on the resolution principle. J. ACM 12(1):23-41. doi: 10.1145/321250.321253.
- Newborn, M. 2000. Automated theorem proving: Theory and practice. New York, NY: Springer. 231 p.
- Lamberov, L. D. 2021. Praktika komp'yuternykh dokazatel'stv i chelovecheskoe ponimanie: epistemologicheskaya problematika [Computer proofs practice and human understanding: Epistemological issues]. Vestnik Permskogo universiteta. Filosofiya. Psikhologiya. Sotsiologiya [Perm University Herald. Philosophy. Psychology. Sociology] 1:5-19. doi: 10.17072/2078-7898/2021-1-5-19. EDN: GTOYOE.
- Novak, V., I. Perfil'eva, and I. Mochkorzh. 2006. Matematicheskie printsipy nechetkoy logiki [Mathematical principles of fuzzy logic]. Moscow: Fizmatlit. 252 p.
- Lee, R. C. T. 1972. Fuzzy logic and the resolution principle. J. ACM 19(1):109-119. doi:10.1145/321679.321688.
- Mukaidono, M. 1988. Fuzzy inference of resolution style. Fuzzy set and possibility theory. Ed. R. R. Yager. New York, NY: Pergamon Press. 224-231.
- Dubois, D., and H. Prade. 1987. Necessity and resolution principle. IEEE T. Syst. Man Cyb. 17(3):474-478. doi: 10.1109/TSMC.1987.4309063.
- Guller, D. 2019. Hyperresolution for Godel logic with truth constants. Fuzzy Set. Syst. 363:1-65. doi: 10.1016/ j.fss.2018.09.008.
- Tammet, T. 1996. A resolution theorem prover for intuitionistic logic. Automated deduction - Cade-13. Eds.
M. A. McRobbie and J. K. Slaney. Lecture notes in computer science ser. Berlin, Heidelberg: Springer. 1104:2-16. doi: 10.1007/3-540-61511-3 65.
- Viedma, M. A. C., R. M. Morales, and I. N. Sanchez. 2001. Fuzzy temporal constraint logic: A valid resolution principle. Fuzzy Set. Syst. 117(2):231-250. doi: 10.1016/ S0165-0114(99)00099-8.
- Habiballa, H. 2012. Resolution principle and fuzzy logic. Fuzzy logic algorithms, techniques, and implementations. Ed. E. Dadios. London: Intech. 55-74.
- Nguyen, T. M. T., and D. A. K. Tran. 2016. Resolution method in linguistic propositional logic. Int. J. Advanced Computer Science Applications 7(1):672-678. doi: 10.14569/IJACSA.2016.070191.
- Samokhvalov, Y. 2019. Proof of theorems in fuzzy logic based on structural resolution. Cybern. Syst. Anal. 55:207- 219. doi: 10.1007/s10559-019-00125-8.
- Raha, S., and K. S. Ray. 1994. Approximate reasoning based on generalized disjunctive syllogism. Fuzzy Set. Syst. 61(2):143-151. doi: 10.1016/0165-0114(94)90230-5.
- Mondal, B., and S. Raha. 2013. Approximate reasoning in fuzzy resolution. Int. J. Intelligence Science 3(2):86-98. doi: 10.4236/ijis.2013.32010.
- Ledeneva, T. M., and M. V. Leshchinskaya. 2021. Metod rezolyutsiy i strategii poiska oproverzheniy [The resolution inference and strategies for finding refutation]. Vestnik VGU. Ser. Sistemnyy analiz i informatsionnye tekhnologii [Proceedings of Voronezh State University. Ser. Systems Analysis and Information Technologies] 1:98-111. doi: 10.17308/sait.2021.1/3374. EDN: RBAVMW.
- Klement, E. P., R. Mesiar, and E. Pap. 2004. Triangular norms. Position paper II: General constructions and parameterized families. Fuzzy Set. Syst. 145(3):411-438. doi: 10.1016/S0165-0114(03)00327-0.
- Ledeneva, T. 2020. Additive generators of fuzzy operations in the form of linear fractional functions. Fuzzy Set. Syst. 386:1-24. doi: 10.1016/j.fss.2019.03.005.
- Ledeneva, T. 2022. New family of triangular norms for decreasing generators in the form of a logarithm of a linear fractional function. Fuzzy Set. Syst. 427:37-54. doi: 10.1016/j.fss.2020.11.020.
- Vagin, V. N., E. Yu. Golovina, A. A. Zagoryanskaya, and M. V. Fomina. 2008. Dostovernyy i pravdopodobnyy vyvod v intellektual'nykh sistemakh [Reliable and plausible conclusion in intelligent systems]. Eds. V. N. Vagin and D. A. Pospelov. Moscow: Fizmatlit. 712 p. EDN: MUWRTJ.
[+] About this article
Title
ANALYSIS OF APPROACHES TO DEFINING FUZZY RESOLVENT
Journal
Informatics and Applications
2024, Volume 18, Issue 1, pp 92-99
Cover Date
2024-04-10
DOI
10.14357/19922264240113
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
resolvent; resolution method; triangular norms and conorms
Authors
T. M. Ledeneva and M. V. Leshchinskaya
Author Affiliations
Voronezh State University, 1 Universitetskaya Sq., Voronezh 394010, Russian Federation
|