Informatics and Applications
2024, Volume 18, Issue 1, pp 18-25
AUTONOMOUS DIFFERENTIAL SYSTEM LINEAR OUTPUT CONTROL BY SQUARE CRITERION ON AN INFINITE HORIZON
Abstract
The problem of optimal control of the stochastic differential system linear output on an infinite horizon is solved. The solution is considered as the limit form of optimal control in the corresponding problem with a finite horizon. Sufficient conditions for the existence of control are given. They consist of the requirements of the stationarity of nonlinear dynamics, the finiteness of the quadratic target functional, the stabilizability of the linear output, and the existence of a limit in the Feynman-Katz formula describing the nonlinear part of control. The conditions for the linear part of the control are related to the classical results of the existence of a solution to the autonomous Riccati equation. The existence of a limit in the Feynman-Katz formula is associated with the solution of a parabolic equation that sets the coefficients for the nonlinear part of the control. A special case of linear drift is considered in which the nonlinea34qar nature of the problem is preserved but optimal control turns out to be linear both in output and in the state variable. The results of a numerical experiment are presented which makes it possible to analyze the transient process in a problem with a finite horizon and an ergodic process in dynamics. For the control coefficients, the limiting transition to the optimal values of the corresponding optimal autonomous control is illustrated.
[+] References (11)
- Athans, M. 1971. The role and use of the stochastic linear-quadratic-Gaussian problem in control system design. IEEE T. Automat. Contr. 16(6):529-552. doi: 10.1109/TAC.1971.1099818.
- Wonham, W. M. 1974. Linear multivariable control. A geometric approach. Lecture notes in economics and mathematical systems ser. Berlin: Springer-Verlag. 347 p.
- Davis, M. H. A. 1977. Linear estimation and stochastic control. London: Chapman and Hall. 224 p.
- Bosov, A. V. 2021. The problem of controlling the linear output of a nonlinear uncontrollable stochastic differential system by the square criterion. J. Comput. Sys. Sc. Int.
60(5):719-739. doi: 10.1134/S1064230721040031.
- Bosov, A. V., and A. I. Stefanovich. 2019. Upravlenie vykhodom stokhasticheskoy differentsial'noy sistemy po kvadratichnomu kriteriyu. II. Chislennoe reshenie uravneniy dinamicheskogo programmirovaniya [Stochastic differential system output control by the quadratic criterion. II. Dynamic programming equations numerical solution]. Informatika i ee Primeneniya - Inform. Appl. 13(1):9-15. doi: 10.14357/19922264190102. EDN: ZASZFR.
- Bosov, A. V., and A. I. Stefanovich. 2020. Upravlenie vykhodom stokhasticheskoy differentsial'noy sistemy po kvadratichnomu kriteriyu. IV. Al'ternativnoe chislennoe reshenie [Stochastic differential system output control by the quadratic criterion. IV. Alternative numerical decision]. Informatika i ee Primeneniya - Inform. Appl. 14(1):24-30. doi: 10.14357/19922264200104. EDN: XNHVFT.
- Fleming, W. H., and R. W. Rishel. 1975. Deterministic and stochastic optimal control. New York, NY: Springer-Verlag. 222 p.
- Shiryaev, A. N. 1996. Probability. New York, NY: Springer Verlag. 624 p.
- Oksendal, B. 2003. Stochastic differential equations. An introduction with applications. New York, NY: Springer- Verlag. 324 p.
- Cox, J. C., J. E. Ingersoll, and S. A. Ross. 1985. A theory of the term structure of interest rates. Econometrica 53(2):385-407. doi: 10.2307/1911242.
- Bohacek, S., and B. Rozovskii. 2004. A diffusion model of roundtrip time. Comput. Stat. Data An. 45(1):25-50. doi: 10.1016/S0167-9473(03)00114-2.
[+] About this article
Title
AUTONOMOUS DIFFERENTIAL SYSTEM LINEAR OUTPUT CONTROL BY SQUARE CRITERION ON AN INFINITE HORIZON
Journal
Informatics and Applications
2024, Volume 18, Issue 1, pp 18-25
Cover Date
2024-04-10
DOI
10.14357/19922264240103
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
stochastic differential Ito system; output control; optimal control; quadratic criterion; parabolic equation; Feynman-Katz formula
Authors
A. V. Bosov
Author Affiliations
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|