Informatics and Applications
2023, Volume 17, Issue 4, pp 23-31
NONPARAMETRIC ALGORITHM FOR AUTOMATIC CLASSIFICATION OF REMOTE SENSING DATA
- V. P. Tuboltsev
- A. V. Lapko
- V. A. Lapko
Abstract
A nonparametric algorithm for automatic classification of large-volume statistical data is proposed.
The algorithm under consideration assumes compression of initial information based on decomposition of multidimensional feature space. As a result, a large statistical sample is transformed into a data array composed of the centers of multidimensional sampling intervals and their corresponding frequencies of random variables.
The information obtained is used in the synthesis of the regression estimate of the probability density. A class is understood as a compact group of observations of a random variable corresponding to a unimodal fragment of the probability density function. On this basis, a nonparametric automatic classification algorithm is developed which is based on the sequential procedure for checking the proximity of the centers of multidimensional sampling intervals and the ratios between the frequencies of belonging of random variables from the original sample to these intervals.
To improve the computational efficiency of the proposed automatic classification algorithm, a multithreaded method of its software implementation is used. The practical significance of the developed algorithm for automatic classification is confirmed by the results of its application for assessing the state of the forests areas using remote sensing data.
[+] References (16)
- Abbas, A. W., N. Minallh, N. Ahmad, S. A. R. Abid, and
M. A. A. Khan. 2016. K-means and ISODATA clustering algorithms for landcover classification using remote sensing. Sindh University Research J. (Science Series)
48(2):315-318.
- Manthena, N. R., N. Kumaran, and S. V. Chandra. 2022. Remote sensing image classification using CNN-LSTM
model. Revue d'Intelligence Artificielle 36(1):147-153. doi: 10.18280/ria.360117.
- Dorofeyuk, À. À. 1971. Algoritmy avtomaticheskoy klassifikatsii (obzor) [Algorithms of automatic classification (review)]. Automat. Rem. Contr. 12:78-113.
- Dorofeyuk, À. À. 2009. Metodologiya ekspertno- klassifikatsionnogo analiza v zadachakh upravleniya i obrabotki slozhnoorganizovannykh dannykh (istoriya i perspektivy razvitiya) [Expert-ranging analysis method-ology in complex organized data processing and control problems (history of development and perspectives)]. Problemy upravleniya [Control Sciences] 3S1:19- 28. EDN: KJUOIN.
- Tsypkin, Ya. Z. 1970. Osnovy teorii obuchayushchikhsya sistem [Foundations of the theory of learning systems]. Moscow: Nauka. 252 p.
- Vasil'ev, V. I., and S.N. Esh. 2011. Osobennosti algoritmov samoobucheniya i klasterizatsii [Features of self-learning algorithms and clustering]. Upravlyayushchie sis- temy i mashiny [Control Systems and Computers] 3:3-9.
- Parzen, E. 1962. On estimation of a probability density function and mode. Ann. Math. Stat. 33(3):1065-1076. doi: 10.1214/aoms/1177704472.
- Epanechnikov, V. A. 1969. Non-parametric estimation of a multivariate probability density. Theor. Probab. Appl. 14(1):153-158. doi: 10.1137/1114019.
- Tararushkin, E. V. 2018. Vosstanovlenie plotnosti raspredeleniya chastits dispersnykh materialov metodom okna Parzena-Rozenblatta [Reconstructing distribution density of particles for disperse materials by the Parzen- Rozenblatt window method]. Vestnik MGSU 13(7):855- 862. doi: 10.22227/1997-0935.2018.7.855-862. EDN: UVNCVV.
- Lapko, A. V., and V. A. Lapko. 2021. Yadernye otsenki plotnosti veroyatnosti i ikh primenenie [Kernel probability density estimates and their application]. Krasnoyarsk: Reshetnev University Publs. 308 p.
- Lapko, A.V., and V.A. Lapko. 2018. Neparametricheskiy algoritm avtomaticheskoy klassifikatsii v usloviyakh statisticheskikh dannykh bol'shogo ob"ema [Nonparametric algorithm of automatic classification under con-ditions of large-scale statistical data]. Informatika i sis- temy upravleniya [Information Science and Control Systems] 57(3):59-70. doi: 10.22250/isu.2018.57.59-70. EDN: YACMRN.
- Zenkov, I.V., A.V. Lapko, V. A. Lapko, S.T. Im, V. P. Tuboltsev, and V. L. Avdeenok. 2021. A nonparametric algorithm for automatic classification of large multivariate statistical data sets and its application. Computer Optics 45(2):253-260.doi: 10.18287/2412-6179-CO-801. EDN: WUOYYA.
- Scott, D. W. 2015. Multivariate density estimation: Theory, practice, and visualization. Hoboken, NJ: John Wiley & Sons. 384 p.
- Fushimi, T, K. Saito, andH. Motoda. 2023. Constructing outlier-free histograms with variable bin-width based on distance minimization. Intell. Data Anal. 27(1):5-29.
- Heinhold, I., and K. W. Gaede. 1964. Ingeniur statistic. Munchen, Wien: Springler Verlag. 352 p.
- Lapko, A. V., V. A. Lapko, S.T. Im, V. P. Tuboltsev, and V. L. Avdeenok. 2022. Programma avtomaticheskoy klassifikatsii dannykh distantsionnogo zondirovaniya Zemli na osnove neparametricheskikh algoritmov prinyatiya resheniy (NAC v. 2.0) [The program for automatic classification of Earth remote sensing data based on nonparametric decision-making algorithms (NAC v. 2.0)]. Certifi-cate of State Registration of the Computer Program RF No. 2022619023.
[+] About this article
Title
NONPARAMETRIC ALGORITHM FOR AUTOMATIC CLASSIFICATION OF REMOTE SENSING DATA
Journal
Informatics and Applications
2023, Volume 17, Issue 4, pp 23-31
Cover Date
2023-12-10
DOI
10.14357/19922264230404
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
automatic classification; large-volume samples; sampling of the range of values of random variables; regression estimation of probability density; remote sensing data
Authors
V. P. Tuboltsev , A. V. Lapko , , and V. A. Lapko ,
Author Affiliations
M. F. Reshetnev Siberian State University of Science and Technology, 31 Krasnoyarsky Rabochy Av., Krasnoyarsk 660037, Russian Federation
Institute of Computational Modelling of the Siberian Branch of the Russian Academy of Sciences, 50/44 Akadem- gorodok, Krasnoyarsk 660036, Russian Federation
|