Informatics and Applications
2023, Volume 17, Issue 4, pp 9-16
MARKET WITH MARKOV JUMP VOLATILITY III: PRICE OF RISK MONITORING ALGORITHM GIVEN DISCRETE-TIME OBSERVATIONS OF ASSET PRICES
Abstract
The third part of the series is devoted to the online estimation of the market price of risk. The market model includes a deposit, underlying, and derivative assets. The model of the underlying asset prices contains stochastic volatility represented by a arkovjump process (MJP). There is no arbitrage in the considered market; so, the market price of risk is a function of the MJP's current value. So, the MJP monitoring problem transforms into the MJP state filtering one. The statistical data are available at discrete moments and contain the direct observations of the underlying assets and indirect observations of the derivative ones. The paper presents the solution to the optimal filtering problem and the corresponding algorithm of its numerical realization. The paper also contains a numerical example demonstrating the performance of the MJP state estimates in dependence on the type and structure of the available observations.
[+] References (12)
- Borisov, A. 2023. Rynok s markovskoy skachkoobraznoy volatil'nost'yu I: monitoring tseny riska kak zadacha optimal'noy fil'tratsii [Market with Markov jump volatility I: Price of risk monitoring as an optimal filtering problem]. Informatika i ee Primenen iya - Inform. Appl. 17(2):27-33. doi: 10.14357/19922264230204. EDN: GAXCHQ.
- Borisov, A. 2023. Rynok s markovskoy skachkoobraznoy volatil'nost'yu II: algoritm vychisleniya spravedlivoy tseny derivativov [Market with Markov jump volatility II: Algorithm of derivative fair price calculation]. Informatika i ee primeneniya - Inform. Appl. 17(3):18-24. doi: 10.14357/19922264230303. EDN: DNXJGB.
- Borisov, A., and I. Sokolov. 2020. Optimal filtering of Markov jump processes given observations with state-dependent noises: Exact solution and stable numerical schemes. Mathematics 8(4):506. 22 p. doi: 10.3390/math8040506.
- Shiryayev, A. 1999. Essentials of stochastic finance: Facts, models, theory. Hackensack, NJ: World Scientific. 834 p.
- Karatzas, I., and S. Shreve. 2016. Methods of mathematical finance. Berlin: Springer. 416 p.
- Bollen, N., T. Smith, and R. Whaley. 2004. Modeling the bid/ask spread: Measuring the inventory-holding premium. J. Financ. Econ. 72(1):97-141. doi: 10.1016/S0304- 405X(03)00169-7.
- Lim, T., V. Vath, J. Sahut, and S. Scotti. 2013. Bid-ask spread modelling, a perturbation approach. Progress in probability. Eds. R. Dalang, M. Dozzi, and F. Russo. Basel: Birkhauser. 67:411-434. doi: 10.1007/978-3-0348- 0545-2J21.
- Cont, R., A. Kukanov, and S. Stoikov. 2014. The price impact of order book events. J. Financ. Economet. 12(1):47- 88. doi: 10.2139/ssrn.1712822.
- Kuhn, C., and M. Riedel. 2017. Price setting of market makers: A filtering problem with endogenous filtration. Math. Financ. 27(1):251-275. doi: 10.1111/mafi.12079.
- Cont, R., and M. Muller. 2021. A stochastic partial differential equation model for limit order book dynamics. SIAM J. Financ. Math. 12(2):744-787. doi: 10.1137/ 19M1254489.
- Borisov, A. 2020. Chislennye skhemy fil'tratsii markovskikh skachkoobraznykh protsessov po diskretizovannym nablyudeniyam III: sluchay mul'tiplikativnykh shumov [Numerical schemes of Markov jump process filtering given discretized observations III: Multiplicative noises case] Informatika i ee primeneniya - Inform. Appl. 14(2)10-18. doi: 10.14357/19922264200202. EDN: OVICVK.
- Platen, E., and N. Bruti-Liberati. 2010. Numerical solution of stochastic differential equations with jumps in finance. Berlin: Springer. 884 p.
[+] About this article
Title
MARKET WITH MARKOV JUMP VOLATILITY III: PRICE OF RISK MONITORING ALGORITHM GIVEN DISCRETE-TIME OBSERVATIONS OF ASSET PRICES
Journal
Informatics and Applications
2023, Volume 17, Issue 4, pp 9-16
Cover Date
2023-12-10
DOI
10.14357/19922264230402
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
Markov jump process; optimal filtering; stochastic volatility; market price of risk; prevailing martingale measure
Authors
A. V. Borisov
Author Affiliations
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|