Informatics and Applications
2023, Volume 17, Issue 3, pp 64-70
LOGICAL METHODS OF CORRECT DATA CLASSIFICATION
- E. V. Djukova
- G. O. Masliakov
- A. P. Djukova
Abstract
The work is devoted to issues of the application of discrete apparatus (logical methods of integer data analysis) for the supervised classification problem. Three main directions of logical classification are considered: Correct Voting Procedures (CVP), Logical Analysis of Data (LAD), and Formal Concept Analysis (FCA). Using the terminology of the CVP direction, the basic concepts applied in LAD and FCA are presented. The general scheme of the logical classifier is described, according to which each logical classifier at the training stage sets some partial order on a special set of fragments of precedents descriptions and searches for the maximum elements of this set relative to the given order. Such studies are important for creating a general theory of correct classification according to precedents based on the use of a discrete apparatus.
[+] References (21)
- Chegis, I. A., and S. V. Yablonskiy. 1958. Logicheskie sposoby kontrolya elektricheskikh skhem [Logical methods of control of work of electric schemes]. Trudy Matematiche- skogo instituta imeni V.A. Steklova AN SSSR [Proceedings of the Steklov Institute of Mathematics of the USSR Academy of Sciences] 51:270-360.
- Baskakova, L., and Yu. Zhuravlev. 1981. A model of recognition algorithms with representative sampls and systems of supporting sets. USSR Comp. Math. Math. 21(5):189- 199. doi: 10.1016/0041-5553(81)90109-9.
- Djukova, E. V., Yu. I. Zhuravlev, and K. V. Rudakov. 1996. Algebraic-logic synthesis of correct recognition procedures based on elementary algorithms. Comput. Math. Math. Phys. 36(8):1161-1167.
- Djukova, E., and Yu. Zhuravlev. 2000. Discrete analysis of feature descriptions in recognition problems of high dimensionality. Comp. Math. Math. Phys. 40(8):1214-1227.
- Djukova, E., and N. Peskov. 2002. Search for informative fragments of object descriptions in discrete recognition procedures. Comp. Math. Math. Phys. 42(5):711-723.
- Djukova, E.V., G. O. Maslyakov, and P. A. Prokofyev 2019. On the logical analysis of partially ordered data in the supervised classification problem. Comput. Math. Math. Phys. 59(9):1542-1552.
- Djukova, E. V., and G. O. Maslyakov. 2021. O vybore chastichnykh poryadkov na mnozhestvakh znacheniy priznakov v zadache klassifikatsii [On the choice of partial orders on feature values sets in the supervised classification problem]. Informatika i ee Primeneniya - Inform. Appl. 15(4):72-78. doi: 10.14357/19922264210410.
- Dragunov, N. A., E. V. Djukova, and A. P. Djukova. 2022. Supervised classification and finding frequent elements in data. 8th Conference (International) on Information Technology and Nanotechnology Proceedings. 9848521. 5 p.
- Crama, Y., P. L. Hammer, and T Ibaraki. 1988. Cause- effect relationships and partially defined Boolean functions. Ann. Oper. Res. 16(1):299-325. doi: 10.1007/ BF02283750.
- Wille, R. 1982. Restructuring lattice theory: An approach based on hierarchies of concepts. Ordered sets. Ed. I. Rival. NATO Advanced Study Institutes ser. Netherlands: Springer. 83:445-470. doi: 110.1007/978-94009-7798-3_15.
- Zhuravlev, Yu. I., V.V. Ryazanov, and O.V. Senko. 2006. Raspoznavanie. Matematicheskie metody. Programmnaya sistema. Prakticheskie primeneniya [Recognition. Mathematical methods. Software system. Practical applications]. Moscow: FAZIS. 159 p.
- Masich, I. S. 2019. Metod optimal'nykh logicheskikh reshayushchikh pravil dlya zadach raspoznavaniya i prognozirovaniya [The method of optimal logical decision rules for recognition and prediction problems]. Sistemy upravleniya i informatsionnye tekhnologii [Control Systems and Information Technologies] 75(1):31-37.
- Finn, V. K. 1976. O vozmozhnosti formalizatsii pravdopodobnykh rassuzhdeniy sredstvami mnogoznachnykh logik [On the possibility of formalizing plausible reasoning by means of multivalued logics]. Vsesoyuzn. simpozium po logike i metodologii nauki [All-Union Symposium on the Logic and Methodology of Science]. Kiev: Naukova dum- ka. 82-83.
- Kuznetsov, S. O. 1996. Mathematical aspects of concept analysis. J. Mathematical Sciences 80(2):1654-1698. doi: 10.1007/BF02362847.
- Ignatov, D. I., D.V. Gnatyshak, S.O. Kuznetsov, and B. G. Mirkin. 2015. Triadic formal concept analysis and triclustering: Searching for optimal patterns. Mach. Learn. 101:271-302. doi: 10.1007/s10994-015-5487-y
- Zabezhailo, M. I. 2015. Some capabilities of enumeration control in the DSM method. Scientific and Technical Information Processing. Part One: 41(6):335-347. doi: 10.3103/S0147688214060082. Part Two: 41(6):348-361. doi: 10.3103/S0147688214060094.
- Vinogradov, D.V. 2018. On object representation by bit strings for the VKF-method. Automatic Documentation Mathematical Linguistics 52(3):113-116. doi: 10.3103/ S0005105518030044.
- Bonates, T. O., P. L. Hammer, and A. Kogan. 2008. Maximum patterns in datasets. Discrete Appl. Math. 156(6):846-861. doi: 10.1016/j.dam.2007.06.004.
- Eckstein, J., P. L. Hammer, Y. Liu, M. Nediak, and
B. Simeone. 2002. The maximum box problem and its application to data analysis. Comput. Optim. Appl. 23:285- 298. doi: 10.1023/A:1020546910706.
- Kuznetsov, S. O., and S. A. Obiedkov. 2002. Comparing performance of algorithms for generating concept lattice. J. Exp. Theor. Artif. In. 14(2-3):189-216. doi: 10.1080/ 09528130210164170.
- Hammer, P. L., A. Kogan, A. Simeone, and B. Szedmak. 2004. Pareto-optimal patterns in logical analysis of data. Discrete Appl. Math. 144(1-2):79-102. doi: 10.1016/ j.dam.2003.08.013.
[+] About this article
Title
LOGICAL METHODS OF CORRECT DATA CLASSIFICATION
Journal
Informatics and Applications
2023, Volume 17, Issue 3, pp 64-70
Cover Date
2023-10-10
DOI
10.14357/19922264230309
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
supervised classification; logical classifier; Correct Voting Procedures; Logical Analysis of Data; Formal Concept Analysis; irredundant representative elementary classifier; strong pattern; JSM-hypothesis; partial order
Authors
E. V. Djukova , G. O. Masliakov , and A. P. Djukova
Author Affiliations
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|