Informatics and Applications
2023, Volume 17, Issue 3, pp 49-57
ON THE RATE OF CONVERGENCE AND LIMITING CHARACTERISTICS FOR ONE QUASI-BIRTH-DEATH PROCESS
- I. A. Usov
- Y. A. Satin
- A. I. Zeifman
Abstract
A queuing system with one server and different repair and failure options is considered, the number of requirements in which is described by a quasi-birth-death process. To reasonably find the limiting probabilistic characteristics of the system, the rate of convergence to them is studied (that is, the rate at which the initial conditions of the system are "forgotten"). To study the rate of convergence to the limiting regime, a recently developed version of the approach based on the concept of the logarithmic norm of the operator function corresponding to the estimate of the norm of the Cauchy matrix as well as a modernized special transformation of the forward Kolmogorov system was applied. A numerical example is considered for which the estimation of the rate of convergence is shown in detail as well as the construction of some limiting characteristics of the model based on these estimates.
[+] References (19)
- Irvani, S.M. R., K. L. Luangkesorn, and D. Simchi- Levi. 2003. On assemble to order systems with flexible customers. IIE Trans. 35(5):389-403. doi: 10.1080/ 07408170390184107.
- Fadiloglu, M. M., and S. Yeralan. 2002. Models of production lines as quasi-birth-death processes. Math. Comput. Model. 35(7-8):913-930. doi: 10.1016/S0895- 7177(02)00059-6.
- Kim, Y. Y., and S. Li. 1999. Performance evaluation of packet data services over cellular voice networks. Wirel. Netw. 5:211-219. doi: 10.1023/A:1019198927563.
- Wang, K. 1994. Profit analysis of the M/M/R machine repair problem with spares and server breakdowns. J. Oper Res. Soc. 45:539-548. doi: 10.1057/jors.1994.81.
- Jain, M., and R. P. Ghimire. 1997. Machine repair queueing system with non-reliable server and heterogeneous service discipline. J. M.A.C.T. 30:105-115.
- Jain, M., and S. Maheshwari. 2003. Transient analysis of a redundant system with additional repairmen. Am. J. Math. - S. 23(3-4):347-382. doi: 10.1080/01966324.2003.10737618.
- Jain, M., R. Kulshrestha, and S. Maheshwari. 2004. N-policy for a machine repair system with spares and reneging. Appl. Math. Model. 28(6):513-531. doi: 10.1016/j.apm.2003.10.013.
- Ke, J. C., and C. H. Wu. 2012. Multi-server machine repair model with standbys and synchronous multiple vacation. Comput. Ind. Eng. 62(1):296-305. doi: 10.1016/ j.cie.2011.09.017.
- Dudin, A. N., and A. A. Nazarov. 2015. The MMAP/M/R/0 queueing system with reservation of servers operating in a random environment. Probl. Inf. Transm. 51(3):289-298. doi: 10.1134/ S0032946015030060.
- Vishnevskii, V. M., and A. N. Dudin. 2017. Queueing systems with correlated arrival flows and their applications to modeling telecommunication networks. Automat. Rem. Contr. 78(8):1361-1403. doi: 10.1134/ S000511791708001X.
- Vishnevskiy, V. M., O. V. Semenova, and Z. T. Buy. 2020. Issledovanie sistemy pollinga s adaptivnym tsiklicheskim oprosom i ee primenenie dlya proektirovaniya shirokopolosnykh besprovodnykh setey [Investigation of the stochastic polling system and its applications in broadband wireless networks]. Control Sciences 5:50-55. doi: 10.25728/pu.2020.5.6.
- Wu, C. H., and J. C. Ke. 2014. Multi-server machine repair problems under a (V, R) synchronous single vacation policy. Appl. Math. Model. 38:2180-2189. doi: 10.1016/j.apm.2013.10.045.
- Zeifman, A., Y. Satin, A. Kryukova, R. Razumchik, K. Kiseleva, and G. Shilova. 2020. On the three methods for bounding the rate of convergence for some continuous-time Markov chains. Int. J. Appl. Math. Comp. 30(2):251-266. doi: 10.34768/amcs-2020-0020.
- Satin, Y.A. 2021. Issledovanie modeli tipa Mt/Mt/1 s dvumya razlichnymi klassami trebovaniy [On the bounds of the rate of convergence for Mt/Mt/1 model with two different requests]. Sistemy i Sredstva Informati- ki - Systems and Means of Informatics 31(1):17-27. doi: 10.14357/08696527210102.
- Razumchik, R., and A. Rumyantsev. 2022. Some ergodicity and truncation bounds for a small scale Markovian supercomputer model. 36th ECMS Conference (International) on Modelling and Simulation Proceedings. Saarbrucken-Dudweiler, Germany: Digitaldruck Pirrot GmbH. 324-330. doi: 10.7148/2022-0324.
- Kovalev, I. A., Y. A. Satin, A.V. Sinitcina, and A. I. Zeifman. 2022. Ob odnom podkhode k otsenivaniyu skorosti skhodimosti nestatsionarnykh markovskikh modeley sistem obsluzhivaniya [On an approach for estimating the rate of convergence for nonstationary Markov models of
queueing systems]. Informatika i ee Primeneniya - Inform. Appl. 16(3):75-82. doi: 10.14357/19922264220310.
- Usov, I., Y. Satin, and A. Zeifman. 2023. Estimating the rate of convergence of the PH/M/l model by reducing to quasi-birth-death processes. Mathematics 11(6):1494. doi: 10.3390/math11061494.
- Lv, S. 2021. Multi-machine repairable system with one unreliable server and variable repair rate. Mathematics 9(11):1299. doi: 10.3390/math9111299.
- Zeifman, A.I., V.Yu. Korolev, A.V. Korotysheva, and Ya.A. Satin. 2016. Otsenki dlya neodnorodnykh markovskikh sistem obsluzhivaniya s osobennostyami v nule [Bounds for inhomogeneous Markov service systems with singularities at zero]. Moscow: FRC CSC RAS. 56 p.
[+] About this article
Title
ON THE RATE OF CONVERGENCE AND LIMITING CHARACTERISTICS FOR ONE QUASI-BIRTH-DEATH PROCESS
Journal
Informatics and Applications
2023, Volume 17, Issue 3, pp 49-57
Cover Date
2023-10-10
DOI
10.14357/19922264230307
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
quasi-birth-death processes; rate of convergence; ergodicity bounds; logarithmic norm; queuing systems
Authors
I. A. Usov , Y. A. Satin , and A. I. Zeifman , , ,
Author Affiliations
Vologda State University, 15 Lenin Str., Vologda 160000, Russian Federation
Moscow Center for Fundamental and Applied Mathematics, M.V. Lomonosov Moscow State University, 1-52 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
Vologda Research Center of the Russian Academy of Sciences, 56A Gorky Str., Vologda 160014, Russian Federation
|