Informatics and Applications
2023, Volume 17, Issue 2, pp 84-89
COMPLEX CAUSE-AND-EFFECT RELATIONSHIPS
- A. A. Grusho
- N. A. Grusho
- M. I. Zabezhailo
- E. E. Timonina
- S. Ya. Shorgin
Abstract
The paper discusses the task of constructing a logical inference of the specific property from data selected from a plurality of sets of source data. When solving the problem, it should be taken into account both the possibility of violating the cause-and-effect scheme due to noise and the possibility of not achieving the necessary conclusion.
The cause-and-effect scheme of approximate inference has been built, consisting of objects of covering causes and consequences, which begins from the initial prerequisites and ends with the output of the object containing the required property. To describe the process of generating logical inference of the object with the property of interest from the source data, the concept of activating objects is introduced. This property allows one to represent the inference scheme in the form of a DAG (Directed Acyclic Graph). The simple algorithm for constructing the cause-and-effect scheme was built from the source data up to the object containing the desired property. This algorithm also determines the conditions for the existence of the ability to inference from the original conditions up to the object with the required property.
[+] References (14)
- Halpern, J. Y., and J. Pearl. 2005. Causes and explanations: A structural-model approach. Part I: Causes. Brit. J. Philos. Sci. 56(4):843-887.
- Pearl, J. 2010. Causal inference. Causality: Objectives and assessment. Eds. I. Guyon, D. Janzing, and B. Scholkopf. Proceedings of machine learning research ser. Whistler, Canada. 6:39-58.
- Pearl, J. 2013. The mathematics of causal inference. Joint Statistical Meetings Proceedings. ASA. 2515-2529.
- Jurn J., T. Kim, and H. Kim. 2019. A survey of automated root cause analysis of software vulnerability. Innovative mobile and internet services in ubiquitous computing. Eds. L. Barolli, F Xhafa, N. Javaid, and T. Enokido. Advances in intelligent systems and computing ser. Cham: Springer. 773:756-761. doi: 10.1007/978-3-319-93554-6.74.
- Grusho, A., N. Grusho, M. Zabezhailo, E. Timonina, and V. Senchilo. 2021. Metadata for root cause analysis. Communications ECMS 35(1):267-271. doi: 10.7148/2021-0267.
- Grusho, A.A., N.A. Grusho, M.I. Zabezhailo, and E. E. Timonina. 2021. Localization of the root cause of the anomaly. Autom. Control Comp. S. 55(8):978-983. doi: 10.3103/s0146411621080137.
- Grusho, A.A., N.A. Grusho, M.I. Zabezhailo, and E. E. Timonina. 2021. Podderzhka resheniya zadach diagnosticheskogo tipa [Support for solving diagnostic type problems]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 31(1):69-81. doi: 10.14357/08696527210106.
- Grusho, A.A., M.I. Zabezhailo, A.A. Zatsarinny, and E. E. Timonina. 2018. O nekotorykh vozmozhnostyakh upravleniya resursami pri organizatsii proaktivnogo protivodeystviya komp'yuternym atakam [On some possibilities of resource management for organizing active counteraction to computer attacks]. Informatika
i ee Primeneniya - Inform. Appl. 12(1):62-70. doi: 10.14357/19922264180108.
- Williams, T. C., C. C. Bach, N. B. Matthiesen, T. B. Henriksen, and L. Gagliardi. 2018. Directed acyclic graphs: A tool for causal studies in pediatrics. Pediatr. Res. 84(4):487-493. doi: 10.1038/s41390-018-0071-3.
- Grusho, A., N. Grusho, M. Zabezhailo, and E. Timonina. 2020. Generation of metadata for network control. Distributed computer and communication networks. Eds. V. M. Vishnevskiy, K. E. Samouylov, and D.V. Kozyrev Lecture notes in computer science ser. Cham: Springer. 12563:723-735. doi: 10.1007/978-3-030-66471-8_55.
- Scholkopf, B. 2019. Causality for machine learning. Cornell University. arXiv.org. 20 p. Available at: https:// arxiv.org/abs/1911.10500v2 (accessed June 12, 2023).
- Grusho, A. A., N. A. Grusho, M. I. Zabezhailo, V. V. Kulchenkov, E. E. Timonina, and S.Ya. Shorgin. 2023. Prichinno-sledstvennye svyazi v zadachakh klassifikatsii [Causal relationships in classification problems]. Infor- matika i ee Primeneniya - Inform. Appl. 17(1):43-49. doi: 10.14357/19922264230106.
- Grusho, A. A., M. I. Zabezhailo, V. V. Kul'chenkov,
D. V. Smirnov, E. E. Timonina, and S. Ya. Shorgin. 2023. Prichinno-sledstvennye svyazi v zadachakh analiza nenablyudaemykh svoystv protsessov [Cause-and-effect relationships in analysis of unobservable process properties]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 33(2):71-78.
- Anshakov, O. M. 2009. Ob odnoy interpretatsii DSM- metoda avtomaticheskogo porozhdeniya gipotez [On one interpretation of the JSM-method of automatic generation of hypotheses]. Avtomaticheskoe porozhdenie gipotez v intellektual'nykh sistemakh [Automatic hypotheses gen-eration in intelligent systems]. Ed. V. K. Finn. Moscow: Librokom. 81-95.
[+] About this article
Title
COMPLEX CAUSE-AND-EFFECT RELATIONSHIPS
Journal
Informatics and Applications
2023, Volume 17, Issue 2, pp 84-89
Cover Date
2023-07-10
DOI
10.14357/19922264230212
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
cause-and-effect relationships; approximate logical inference; probability of correct inference under noise conditions
Authors
A. A. Grusho , N. A. Grusho , M. I. Zabezhailo , E. E. Timonina , and S. Ya. Shorgin
Author Affiliations
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|