Informatics and Applications
2023, Volume 17, Issue 2, pp 62-70
A QUEUEING SYSTEM FOR PERFORMANCE EVALUATION OF A MARKOVIAN SUPERCOMPUTER MODEL
- R. V. Razumchik
- A. S. Rumyantsev
- R. M. Garimella
Abstract
Consideration is given to the well-known supercomputer model in the form of a Markovian nonwork- conserving two-server queueing system with unlimited queue capacity, in which customers are served by a random number of servers simultaneously. For the first time, it is shown that its basic probabilistic characteristics can be calculated from an unrelated single-server queueing system with infinite capacity, work conserving scheduling, and forced customers' losses. Based on the known matrix-analytic techniques for quasi-birth-and-death processes, it is shown that in certain special cases, the transient queue-size distribution can be found (in terms of Laplace transform) using the Level Crossing Information method and has a matrix-geometric form. Numerical examples which illustrate some properties of the established connection between the two queueing systems are provided.
[+] References (29)
- Morozov, E. V., and A. S. Rumyantsev. 2011. Modeli mnogoservernykh sistem dlya analiza vychislitel'nogo klastera [Multi-server models to analyze high performance cluster], Transactions of the Karelian Research Centre of the Russian Academy of Sciences 5:75-85.
- Rumyantsev, A., and E. Morozov. 2017. Stability criterion of a multiserver model with simultaneous service. Ann. Oper. Res. 252:29-39. doi: 10.1007/s10479-015-1917-2.
- Hong, Y., and W Wang. 2022. Sharp waiting-time bounds for multiserver jobs. 23rd Symposium (International) on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing Proceedings. ACM. 161-170. doi: 10.1145/3492866.3549717
- Grosof, I. 2022. Optimal scheduling in the multiserver-job
model under heavy traffic. Proceedings ACM Measurement
Analysis Computing Systems 3(6):51. 32 p. doi: 10.1145/ 3570612.
- Wang, W, Q. Xie, and M. Harchol-Balter. 2022. Zero queueing for multi-server jobs. ACM Sigmetrics Performance Evaluation Review 1(49):13-14. doi: 10.1145/
3543516.3453924.
- Kim, S. 1979. M/M/s queueing system where customers demand multiple server use. Dallas, TX: Southern Methodist University, 1979. PhD Diss. 104 p.
- Brill, P. H., and L. Green. 1984. Queues in which customers receive simultaneous service from a random number of servers: A system point approach. Manage. Sci. 30(1): 51-68.
- Yashkov, S. F. 1989. Analiz ocheredey v EVM [Analysis of queues in computer systems], Moscow: Radio i svyaz'. 216 p.
- Filippopoulos, D., and H. Karatza. 2007. An M/M/2 parallel system model with pure space sharing among rigid jobs. Math. Comput. Model. 45:491-530.
- Chakravarthy, S. R., and H. D. Karatza. 2013. Two-server parallel system with pure space sharing and Markovian arrivals. Comput. Oper. Res. 40(1):510-519.
- Harchol-Balter, M. 2021. Open problems in queueing theory inspired by datacenter computing. Queueing Syst. 97:3-37.
- Rumyantsev, A., R. Basmadjian, A. Golovin, and S. Astafiev. 2021. A three-level modelling approach for asynchronous speed scaling in high-performance data centres. 12th Conference (International) on Future Energy Systems e-Energy Proceedings. ACM. 417-423.
- Unwin, A. R. 1984. Results for dual resource queues. Modelling and performance evaluation methodology. Eds. F. Baccelli and G. Fayolle. Lecture notes in control and information sciences ser. Berlin/Heidelberg: Springer-Verlag. 60:351-370. doi: 10.1007/BFb0005182.
- Melikov, A. Z. 1996. Computation and optimization methods for multiresource queues. Cybern. Syst. Anal. 32(6):821-836. doi: 10.1007/BF02366862.
- Afanaseva, L., E. Bashtova, and S. Grishunina. 2020. Stability analysis of a multi-server model with simultaneous service and a regenerative input flow. Methodol. Comput. Appl. 22:1439-1455. doi: 10.1007/s11009-019-09721-9.
- Grosof, I., M. Harchol-Balter, and A. Scheller-Wolf. 2020. Stability for two-class multiserver-job systems. arXiv.org. 29 p. Available at: https://arxiv.org/abs/2010.00631 (ac-cessed April 30, 2023).
- Harchol-Balter, M. 2022. The multiserver job queueing model. Queueing Syst. 100(3-4):201-203. doi: 10.1007/ s11134-022-09762-x.
- Vishnevskiy, V. M., and O. V. Semenova. 2006. Mathematical methods to study the polling systems. Automat. Rem. Contr. 67(2):173-220.
- Pechinkin, A.V., and V. V. Chaplygin. 2004. Stationary characteristics of the SM/MSP/n/r queuing system. Automat. Rem. Contr. 65(9):1429-1443.
- Dudin, A. N., V. I. Klimenok, and V. M. Vishnevsky. 2020. The theory of queuing systems with correlated flows. Cham, Switzerland: Springer. 410 p.
- Zhang, J., and E.J. Coyle. 1989. Transient analysis of quasi-birth-death processes. Commun. Stat. Stochastic Models 5(3):459-496. doi: 10.1080/15326348908807119.
- Vishnevskii, V. M., andA. N. Dudin. 2017. Queueing systems with correlated arrival flows and their applications to modeling telecommunication network. Automat. Rem. Contr. 78:1361-1403.
- Bocharov, P.P., and A.V. Pechinkin. 1995. Teoriya massovogo obsluzhivaniya [Queueing theory]. Moscow: RUDN. 529 p.
- Le Ny, L. M., and B. Sericola. 2002. Transient analysis of the BMAP/PH/1 queue. Int. J. Simulation Systems Science Technology 3(3):4-14.
- Hiroyuki, M., and T. Takine. 2005. Algorithmic computation of the time-dependent solution of structured Markov chains and its application to queues. Stoch. Models 21:885-912.
- Rumyantsev, A., R. Basmadjian, S. Astafiev, and A. Golovin. 2022. Three-level modeling of a speed-scaling supercomputer. Ann. Oper. Res. doi: 10.1007/s10479-022- 04830-0.
- Gelbaum, B. R., and J. M. H. Olmsted. 2003. Counter examples in analysis. Courier Corporation. 195 p.
- Dshalalow, J. H. 1995. Advances in queueing: Theory, methods and open problem. London: CRC Press. 528 p.
- Ozawa, T. 2006. Sojourn time distributions in the queue defined by a general QBD process. Queueing Syst. 53(4):203-211. doi: 10.1007/s11134-006-7651-3.
[+] About this article
Title
A QUEUEING SYSTEM FOR PERFORMANCE EVALUATION OF A MARKOVIAN SUPERCOMPUTER MODEL
Journal
Informatics and Applications
2023, Volume 17, Issue 2, pp 62-70
Cover Date
2023-07-10
DOI
10.14357/19922264230209
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
supercomputer model; queueing system; nonwork-conserving scheduling; transient regime
Authors
R. V. Razumchik , A. S. Rumyantsev , and R. M. Garimella
Author Affiliations
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
Institute of Applied Mathematical Research of the Karelian Research Center of the Russian Academy of Sciences,
11 Pushkinskaya Str., Petrozavodsk 185910, Russian Federation
Mahindra University, 62/1ABahadurpally Jeedimetla, Hyderabad 500043, India
|