Informatics and Applications
2023, Volume 17, Issue 2, pp 27-33
MARKET WITH MARKOV JUMP VOLATILITY I: PRICE OF RISK MONITORING AS AN OPTIMAL FILTERING PROBLEM
Abstract
The first part of series is devoted to investigating the market price of risk in a financial system. It contains riskless bank deposits, risky base assets, and their derivatives. The model ofthe underlying price evolution represents a stochastic differential system with stochastic volatility which is a hidden Markov jump process. The investigated market is incomplete and has no arbitrage possibilities. The market price ofrisk, which corresponds to a prevailing martingale measure, can be characterized via the hidden Markov jump process but can not be restored precisely. However, it can be estimated optimally using the observations of both the derivative and underlying prices. Using the concept of the prevailing martingale measure existence, one can derive a system of the partial differential equations which describes an evolution of the derivative prices and represents some analog of the classic Black-Sholes equation. Then, one can convert the calculation problem for the market price of risk to the optimal state filtering in a differential stochastic observation system. The paper also discusses various aspects ofthe numerical realization for the stated estimation problem.
[+] References (17)
- Elliott, R., W. Malcolm, and A. Tsoi. 2002. HMM volatility estimation. 41st IEEE Conference on Decision and Control Proceedings. Piscataway, NJ: IEEE. 1:398-404. doi: 10.1109/CDC.2002.1184527.
- Goldentayer, L., F. K. Klebaner, and R. Sh. Liptser. 2005. Tracking volatility. Probl. Inf. Transm. 41(3):212-229. doi: 10.1007/s11122-005-0026-2.
- Ovitanic, J., R. Liptser, and B. Rozovskii. 2006. A filtering approach to tracking volatility from prices observed at random times. Ann. Appl. Probab. 16:1633-1652. doi: 10.1214/105051606000000222.
- Runggaldier, W. 2004. Estimation via stochastic filtering in financial market models. Contemp. Math. 351:309-318. doi: 10.1090/conm/351/06412.
- Bjork, T. 1998. Arbitrage theory in continuous time. New York, NY: Oxford University Press. 324 p.
- Duffie, D. 2001. Dynamic asset pricing theory. Princeton, NJ: Princeton University Press. 472 p.
- Dai, Q., and K. Singleton. 2000. Specification analysis of affine term structure models. J. Financ. 55(5):1943-1978. doi: 10.1111/0022-1082.00278.
- Shiryayev, A. 1999. Essentials of stochastic finance: Facts, models, theory. New Jersey, NJ: World Scientific. 834 p.
- Elliott, R., J. Moore, andL. Aggoun. 2010. Hidden Markov models: Estimation and control. New York, NY: Springer. 382 p.
- Criens, D. 2020. No arbitrage in continuous financial markets. Math. Financ. Econ. 14:461-506. doi: 10.1007/ s11579-020-00262-1.
- Cohen, S., and R. Elliott. 2015. Stochastic calculus and applications. New York, NY: Birkhauser 666 p.
- Gihman, I., and A. Skorohod. 1979. The theory of stochastic processes III. New York, NY: Springer. 388 p.
- Borisov, A., and I. Sokolov. 2020. Optimal filtering of Markov jump processes given observations with
state-dependent noises: Exact solution and stable numerical schemes. Mathematics 8(4):506. doi: 10.3390/ math8040506.
- Borisov, A. 2020. Chislennye skhemy fil'tratsii markovskikh skachkoobraznykh protsessov po diskretizovannym nablyudeniyam II: sluchay additivnykh shumov [Numerical schemes of Markov jump process filtering given discretized observations II: Additive noise case]. Informatika i ee primeneniya - Informatics and Applications 14(1): 117-23. doi: 10.14357/19922264200103.
- Borisov, A. 2020. Chislennye skhemy fil'tratsii markovskikh skachkoobraznykh protsessov po diskretizovannym nablyudeniyam III: sluchay mul'tiplikativnykh shumov [Numerical schemes of Markov jump process filtering given discretized observations III: Multiplicative noises case] Informatika i ee primeneniya - Informatics and Applications 14(2)10-18. doi: 10.14357/19922264200202.
- Liptser, R., and A. Shiryaev. 2001. Statistics of random processes II: Applications. Berlin/Heidelberg: Springer. 402 p.
- Korolev, V., A. Chertok, A. Korchagin, and A. Gorshenin. 2013. Veroyatnostno-statisticheskoe modelirovanie informatsionnykh potokov v slozhnykh finansovykh sistemakh na osnove vysokochastotnykh dannykh [Probability and statistical modeling of information flows in complex finan-cial systems based on high-frequency data]. Informatika i ee primeneniya - Informatics and Applications 7(1)12-21.
[+] About this article
Title
MARKET WITH MARKOV JUMP VOLATILITY I: PRICE OF RISK MONITORING AS AN OPTIMAL FILTERING PROBLEM
Journal
Informatics and Applications
2023, Volume 17, Issue 2, pp 27-33
Cover Date
2023-07-10
DOI
10.14357/19922264230204
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
Markov jump process; optimal filtering; diffusion and counting observations; multiplicative observation noise; numerical approximation accuracy
Authors
A. V. Borisov
Author Affiliations
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|