Informatics and Applications
2023, Volume 17, Issue 1, pp 43-49
CAUSAL RELATIONSHIPS IN CLASSIFICATION PROBLEMS
- A. A. Grusho
- N. A. Grusho
- M. I. Zabezhailo
- V. V. Kulchenkov
- E. E. Timonina
- S. Ya. Shorgin
Abstract
In the present paper, a classification object is considered as the cause for the appearance of one or more consequences and any classification algorithm decides on the class observing the consequences from the analyzed cause. The paper considers the consequences of the cause in the binary classification problem as sources of additional information confirming or rejecting the hypothesis of the cause in the classified object. When considering a hypothesis about the presence or absence of a certain cause in an object classified by this property, the knowledge presentation language is automatically built based on several consequences. Then, it is easy to use the available information from different information spaces in an object classification task. To use cause-and-effect relationships in a classification task, machine learning should be used. In conditions of teaching with a teacher, there are many precedents when the presence of a cause is known. Then one can statistically single out events that are the consequences of the cause. Deterministic cause-and-effect relationships generate errors only at the expense of noise. In those precedents where there is no cause, positive classification appears only at the expense of noise regardless of precedent to precedent. Thus, even a weak deviation from equally probable noise allows one to build a consistent criterion that distinguishes consequences from random noise. Sequelae can be isolated independently of each other. This follows from the determinism of the cause-and-effect relationship and the independence of noise.
[+] References (17)
- Glymour, C., K. Zhang, and P. Spirtes. 2019. Review of causal discovery methods based on graphical models. Frontiers Genetics 10:524. 15 p. doi: 10.3389/fgene. 2019.00524.
- Halpern, J. Y., and J. Pearl. 2005. Causes and explanations: A structural-model approach. Part I: Causes. Brit. J. Philos. Sci. 56(4):843-887.
- Pearl, J. 2010. Causal inference. Workshop on Causality Proceedings: Objectives and Assessment at NIPS. Eds.
I. Guyon, D. Janzing, and B. Scholkopf. Proceedings of machine learning research ser. 6:39-58.
- Pearl, J. 2013. The mathematics of causal inference. Joint Statistical Meetings Proceedings. ASA. 2515-2529.
- Zhang, C., K. Zhang, and Y. Li. 2021. A causal view on robustness of neural networks. arXiv.org. 21 p. Available at: https://arxiv.org/abs/2005.01095 (accessed January 20, 2023).
- Wang, B., C. Lyle, and M. Kwiatkowska. 2021. Provable guarantees on the robustness of decision rules to causal interventions. 30th Joint Conference (International) on Ar-tificial Intelligence Proceedings. 4258-4265. Available at: https://www.ijcai.org/proceedings/2021 /0585.pdf (accessed March 13, 2023).
- Valiant, L. G. 2008. Knowledge infusion: In pursuit of robustness in artificial intelligence. IARCS Annual Conference on Foundations of Software Technology and Theo-retical Computer Science Proceedings. Eds. R. Hariharan, M. Mukund, and V. Vinay. Leibniz international iro- ceedings in informatics ser. Wadern, Germany: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. 2:415- 422. doi: 10.4230/ LIPIcs.FSTTCS.2008.1770.
- Grusho, A., N. Grusho, M. Zabezhailo, E. Timonina, and V. Senchilo. 2021. Metadata for root cause analysis. Communications ECMS 35(1):267-271. doi: 10.7148/ 2021-0267.
- Grusho, A., N. Grusho, M. Zabezhailo, and E. Timonina. 2021. Udalennyy monitoring rabochikh protsessov [Remote monitoring of workflows]. Informatika i ee Prime- neniya - Inform. Appl. 15(3):2-8.
- Grusho, A., N. Grusho, M. Zabezhailo, and E. Timonina. 2021. Localization of the root cause of the anomaly. Autom. Control Comp. S. 55(8):978-983.
- Grusho, N. A., A. A. Grusho, M. I. Zabezhailo, and E. E. Timonina. 2020. Metody nakhozhdeniya prichin sboev v informatsionnykh tekhnologiyakh s pomoshch'yu metadannykh
[Methods of finding the causes of information technology failures by means of meta data]. Informatika i ee Primeneniya - Inform. Appl. 14(2):33-39. doi: 10.14357/19922264200205.
- Richens, J. G., C. M. Lee, and S. Johri. 2020. Improving the accuracy of medical diagnosis with causal machine learning. Nat. Commun. 11(1):3923. 12 p. doi: 10.1038/s41467-020-17419-7.
- Zabezhailo, M. I., A. A. Grusho, N. A. Grusho, and E. E. Timonina. 2021. Podderzhka resheniya zadach diagnosticheskogo tipa [Support for solving diagnostic type problems]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 31(1):69-81.
- Grusho, A., N. Grusho, and E. Timonina. 2020. Method of several information spaces for identification of anomalies. Intelligent distributed computing XIII. Eds. I. Kotenko, C. Badica, V. Desnitsky, D. El Baz, and M. Ivanovic. Studies in computational intelligence ser. Cham: Springer. 868:515-520. doi: 10.1007/978-3-030-32258-8_60.
- Xiong, P., S. Buffett, S. Iqbal, P. Lamontagne, M. Mamun, and H. Molyneaux. 2022. Towards a robust and trustworthy machine learning system development: An engineering perspective. J. Information Security Applications 65:103121. 58 p. doi: 10.1016/j.jisa.2022.103121.
- Wald, A. 1959. Sequential analysis. J. Wiley & Sons. 212 p.
- Shiryaev, A.N. 2004. Veroyatnost' [Probability]. 3rd ed. Moscow: MTsNMO. 2 vols. 521 p.
[+] About this article
Title
CAUSAL RELATIONSHIPS IN CLASSIFICATION PROBLEMS
Journal
Informatics and Applications
2023, Volume 17, Issue 1, pp 43-49
Cover Date
2023-04-10
DOI
10.14357/19922264230106
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
finite classification task; cause-and-effect relationships; machine learning
Authors
A. A. Grusho , N. A. Grusho , M. I. Zabezhailo , V. V. Kulchenkov , E. E. Timonina , and S. Ya. Shorgin
Author Affiliations
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
VTB Bank, 43-1 Vorontsovskaya Str., Moscow 109147, Russian Federation
|