Informatics and Applications
2022, Volume 16, Issue 4, pp 26-33
ON BOUNDS OF THE STATIONARY WAITING TIME EXTREMAL INDEX IN M/G/1 SYSTEM WITH MIXTURE SERVICE TIMES
Abstract
It is proved that if the original stationary sequence has m-component mixture distribution with stochastically ordered components, there are limit distributions for the maxima of all components, and the normalizing sequences are ordered, then the extremal index of the original sequence is within the boundaries of the extremal indexes of the smallest and largest components. This result is used to estimate the extremal index of the stationary waiting time in a queuing system of type M/G/1 in which the queuing time is given by an m-component distribution mixture. An example of a system M/Hm/1 with hyperexponential service time is considered. Using the exact simulation approach, the results of estimating the extremal index of stationary waiting time in the system M/H2/1 are obtained.
[+] References (23)
- Bertail, P., S. Clemencon, and J. Tressou. 2009. Extreme values statistics for Markov chains via the (pseudo-) regenerative method. Extremes 12(4):327-360. doi: 10.1007/s10687-009-0081-y
- Resnick, S. 1987. Extreme values, regular variation and point processes. New York, NY: Springer. 320 p.
- Leadbetter, M.R., G. Lindgren, and H. Rootzen. 1983. Extremes and related properties of random sequences and processes. New York, NY: Springer. 336 p.
- Embrechts, P., C. Kluppelberg, and T. Mikosch. 1997. Modelling extremal events for insurance andfinance. Berlin, Heidelberg: Springer. 660 p.
- De Haan, L., and A. Ferreira. 2006. Extreme value theory: An introduction. New York, NY: Springer Science + Business Media LLC. 491 p.
- Smith, L., and I. Weissman. 1994. Estimating the extremal index. J. Roy. Stat. Soc. BMet. 56(3):515-528. doi: 10.1111/J.2517-6161.1994.TB01997.X.
- Weissman, I., and S. Novak. 1998. On blocks and runs es-timators of extremal index. J. Stat. Plan. Infer. 66(2):281- 288. doi: 10.1016/S0378-3758(97)00095-5.
- Iglehart, D.L. 1972. Extreme values in GI/G/1 queue. Ann. Math. Stat. 3(2):627-635. doi: 10.1214/aoms/ 1177692642.
- Rootzen, H. 1988. Maxima and exceedances of stationary Markov chains. Adv. Appl. Probab. 20(2):371-390. doi: 10.2307/1427395.
- Hooghiemstra, G., and L. E. Meester. 1996. Computing the extremal index of special Markov chains and queues.
Stoch. Proc. Appl. 65(2):171-185. doi: 10.1016/S0304- 4149(96)00111-1.
- Asmussen, S. 1998. Extreme value theory for queues via cycle maxima. Extremes 1(2):137-168. doi: 10.1023/A:1009970005784.
- Asmussen, S. 2003. Applied probability and queues. New York, NY: Springer-Verlag. 438 p.
- Markovich, N., and R. Razumchik. 2019. Cluster modeling of Lindley process with application to queuing. Distributed computer and communication networks. Lecture notes in computer science ser. Cham, Switzerland: Springer. 11965:330-341. doi: 10.1007/978-3-030- 36614-8_25.
- Markovich, N. 2017. Clustering and hitting times of threshold exceedances and applications. Int. J. Data Analysis Techniques Strategies 9(4):331-347. doi: 10.1504/ IJDATS.2017.10009424.
- Rodionov, I. 2021. On threshold selection problem for extremal index estimation. Recent developments in stochastic methods and applications. Eds. A. N. Shiryaev, K. E. Samouylov, and D. V. Kozyrev. Springer proceedings in mathematics & statistics ser. Cham, Switzerland: Springer. 371:3-16. doi: 10.1007/978-3-030-83266-7.1.
- Feldman, A., and W. Whitt. 1998. Fitting mixtures of exponentials to long-tail distributions to analyze network performance models. Perform. Evaluation 31(3-4)245- 279. doi: 10.1016/S0166-5316(97)00003-5.
- Peshkova, I., E. Morozov, and M. Maltseva. 2021. On regenerative estimation of extremal index in queueing systems. Distributed computer and communication networks. Eds. V. M. Vishnevskiy, K. E. Samouylov, and
D. V. Kozyrev. Lecture notes in computer science ser. Cham, Switzerland: Springer. 13144:251-264. doi: 10.1007/978-3-030-92507-9-21.
- Peshkova, I. 2022. Sravneniye ekstremal'nykh indeksov vremen ozhidaniya v sistemakh obsluzhivaniya M/G/l [The comparison of waiting time extremal indexes in M/G/l queueing systems]. Informatika i ee Prime- neniya - Inform. Appl. 16(1):61-67. doi: 10.14357/ 19922264220109.
- Peshkova, I., and E. Morozov. 2022. On comparison of multiserver systems with multicomponent mixture distributions. J. Math. Sci. 267(2):260-272. doi: 10.1007/ s10958-022-06132-z.
- Peshkova, I., E. Morozov, and M. Maltseva. 2022. On comparison ofwaiting time extremal indexes in queueing
systems with Weibull service times. Information technologies and mathematical modelling. Queueing theory and applications. Communications in computer and information science ser. Cham, Switzerland: Springer. 1605:80-92. doi: 10.1007/978-3-031-09331-9-7.
- Whitt, W. 1981. Comparing counting processes and queues. Adv. Appl. Probab. 13:207-220. doi: 10.2307/ 1426475.
- Ross, S., J. Shanthikumar, and Z. Zhu. 2005. On increasing-failure-rate random variables. J. Appl. Probab. 42:797-809. doi: 10.1239/jap/1127322028.
- Sigman, K. 2012. Exact simulation of the stationary dis-tribution of the FIFO M/G/c queue: The general case for p < c. Queueing Syst. 70: 37-43. doi: 10.1007/s11134- 011-9266-6.
[+] About this article
Title
ON BOUNDS OF THE STATIONARY WAITING TIME EXTREMAL INDEX IN M/G/1 SYSTEM WITH MIXTURE SERVICE TIMES
Journal
Informatics and Applications
2022, Volume 16, Issue 4, pp 26-33
Cover Date
2022-12-30
DOI
10.14357/19922264220405
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
extreme value distributions; extremal index; queueing system; stochastic ordering
Authors
I. V. Peshkova ,
Author Affiliations
Petrozavodsk State University, 33 Lenina Prosp., Petrozavodsk 185910, Russian Federation
Karelian Research Centre of the Russian Academy of Sciences, 11 Pushkinskaya Str., Petrozavodsk 185910, Russian Federation
|