Informatics and Applications
2022, Volume 16, Issue 2, pp 68-74
CAUSE-AND-EFFECT CHAIN ANALYSIS
- A. A. Grusho
- N. A. Grusho
- M. I. Zabezhailo
- A. A. Zatsarinny
- E. E. Timonina
- S. Ya. Shorgin
Abstract
The paper is devoted to the analysis of the possibilities of using cause-and-effect relationships in the control of the realization of information technologies in distributed information systems. To carry out this analysis, the simple example of a fragment of some fixed information technology has been built which examines situations where control can rely on cause-and-effect relationships between actions in information technologies and when alleged cause-and-effect relationships simply do not exist. The paper shows the limitations of using cause-and-effect relationships to increase confidence in the results of complex computer calculations. This limitation is based on the fact that in order to get causal relationships in waiting of the certain result, it is often impossible to control the relationships of characteristics that are mandatory for the desired consequence to be obtained from actions that are assumed to be its cause. To use cause-and-effect relationships in information technology, it is necessary to supplement the actions of information technology with actions to control the relationships between characteristics. Without this condition, the properly constructed sequence of information technology actions is a necessary but insufficient condition of the expected consequence.
[+] References (16)
- Workshop on Explainable Artificial Intelligence Proceedings. 2017. Available at: http://home.earthlink.net/ dwaha / research / meetings/ijcai17-xai/ (accessed April 28, 2022).
- DARPA sets up fast track for third wave AI. July 26, 2018. Available at: https://defence.pk/pdf/threads/darpa- sets-up-fast-track-for-third-wave-ai.569563/ (accessed April 28, 2022).
- Verma, P., andS. Srivastava. 2021. Learning causal models of autonomous agents using interventions. Workshop on Generalization in Planning Proceedings. Available at: https: / / pulkitverma.net/assets/pdf/vs_genplan21/vs_ genplan21.pdf (accessed April 28, 2022).
- Halpern, J. Y., and J. Pearl. 2005. Causes and explanations: A structural-model approach. Part I: Causes. Brit. J. Philos. Sci. 56(4):843-887.
- Pearl, J. 2010. Causal inference. Workshop on Causality Proceedings: Objectives and Assessment at NIPS. Eds.
I. Guyon, D. Janzing, and B. Scholkopf. Proceedings of machine learning research ser. Whistler, Canada. 6:39-58.
- Pearl, J. 2013. The mathematics of causal inference. Joint Statistical Meetings Proceedings. ASA. 2515-2529.
- Halpern, J. Y. 2015. A modification of the Halpern-Pearl definition of causality. 24th Conference (International) on Artificial Intelligence Proceedings. AAAI. 3022-3033.
- Yao, L., Z. Chu, S. Li, Y. Li, J. Gao, and A. Zhang. 2021. A survey on causal inference. ACM T. Knowl. Discov. D. 15(5):74. 46 p. doi: 10.1145/3444944.
- Agrawal, R., D. Gunopulos, and F. Leymann. 1998. Mining process models from workflow logs. Advances in database technology. Eds. H. J. Schek, G. Alonso, F Saltor, and I. Ramos. Lecture notes in computer science ser. Berlin, Heidelberg: Springer-Verlag. 1337:467-483. doi: 10.1007/BFb0101003.
- Grusho, A. A., N.A. Grusho, M.I. Zabezhailo,
D. V. Smirnov, E. E. Timonina and S.Ya. Shorgin. 2021. Statistika i klastery v poiskakh anomal'nykh vkrapleniy v usloviyakh bol'shikh dannykh [Statistics and clusters for detection of anomalous insertions in Big Data environment]. Informatika i ee Primeneniya - Inform. Appl. 15(4):79-86.
- Grusho, A., N. Grusho, M. Zabezhailo, and E. Timonina. 2022. Evaluation of trust in computer-computed results. Comm. Com. Inf. Sc. 1552:420-432.
- Grusho, A., N. Grusho, M. Zabezhailo, A. Zatsarinny, and E. Timonina. 2017. Information security of SDN on the basis of metadata. Computer network security. Eds. J. Rak, J. Bay, I. V. Kotenko, et al. Lecture notes in computer science ser. Springer. 10446:339-347.
- Grusho, N.A., A.A. Grusho, M.I. Zabezhailo, and
E. E. Timonina. 2020. Metody nakhozhdeniya prichin sboev v informatsionnykh tekhnologiyakh s pomoshch'yu metadannykh [Methods of finding the causes of information technology failures by means of metadata]. Informatika i ee Primeneniya - Inform. Appl. 14(2):33-39. doi: 10.14357/19922264200205.
- Grusho, A. A., E. E. Timonina, N.A. Grusho, and I. Yu. Teryokhina. 2020. Vyyavlenie anomaliy s pomoshch'yu metadannykh [Identifying anomalies using metadata]. Informatika i ee Primeneniya - Inform. Appl. 14(3):76-80. doi: 10.14357/19922264200311.
- Grusho, A., N. Grusho, M. Zabezhailo, E. Timonina, and V. Senchilo. 2021. Metadata for root cause analysis. Communications ECMS 35(1):267-271. doi: 10.7148/ 2021-0267.
- Grusho, A.A., N.A. Grusho, M.I. Zabezhailo, and E. E. Timonina. 2021. Use of contradictions in data for finding implicit failures in computer systems. Autom. Con- trolComp. S. 55(8): 1115-1120.
[+] About this article
Title
CAUSE-AND-EFFECT CHAIN ANALYSIS
Journal
Informatics and Applications
2022, Volume 16, Issue 2, pp 68-74
Cover Date
2022-07-25
DOI
10.14357/19922264220209
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
information security; cause-and-effect relations; monitoring of information technologies
Authors
A. A. Grusho , N. A. Grusho , M. I. Zabezhailo , A. A. Zatsarinny , E. E. Timonina , and S. Ya. Shorgin
Author Affiliations
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|