Informatics and Applications
2021, Volume 15, Issue 4, pp 41-49
CAPTURING EVOLUTION OF LEXICOGRAPHIC KNOWLEDGE IN DYNAMIC CLASSIFICATION SYSTEMS
- A. A. Goncharov
- I. M. Zatsman
- M. G. Kruzhkov
- E. Yu. Loshchilova
Abstract
The paper examines two problems that have to be addressed in order to capture the evolution of lexicographic knowledge. The lexicographic knowledge discussed in the paper is presented in the form of classifications categories that are used to provide linguistic markup for textual data in information systems. Evolution of lexicographic data is considered based on the example of a supracorpora database (SCDB). The first problem deals with integration of the framework for capturing changes of semantic content of classification categories into the SCDB. The proposed solution to this problem involves integration of two new tables that capture information about temporal states of the classification categories and about change operations applied to those categories. The paper describes how these tables are integrated into the SCDB structure. The second problem deals with providing the user interface for application of changes to the classification categories. The interface implemented in the SCDB is described in detail. The proposed solutions can be scaled so that they would make it possible to capture evolution not only of lexicographic knowledge but of scientific knowledge in general if this knowledge can be represented in the form of a dynamic classification system.
[+] References (26)
- Goncharov, A. A., I. M. Zatsman, and M. G. Kruzhkov.
2019. Temporal'nye dannye v leksikograficheskikh bazakh znaniy [Temporal data in lexicographic databases]. Informatika i ee Primeneniya - Inform. Appl. 13(4):90-96.
- Goncharov, A. A., I. M. Zatsman, and M. G. Kruzhkov.
2020. Evolyutsiya klassifikatsiy v nadkorpusnykh bazakh dannykh [Evolution of classifications in supracorpora databases]. Informatika i ee Primeneniya - Inform. Ap- pl. 14(4):108-116.
- Goncharov, A. A., I. M. Zatsman, and M. G. Kruzhkov.
2021. Predstavlenie novykh leksikograficheskikh znaniy v dinamicheskikh klassifikatsionnykh sistemakh [Representing New Lexicographical Knowledge in Dynamic Classification Systems]. Informatika i ee Primeneniya - Inform. Appl. 15(1):86-93.
- McGuinness, D. L. 2003. Ontologies come of age. Spinning the Semantic Web: Bringing the World Wide Web to its full potential. Eds. D. Fensel, J. Hendler, H. Lieberman, and W Wahlster. Cambridge, MA: MIT Press. 171-194.
- Ooi, V. B. Y. 1998. Computer corpus lexicography. Edinburgh, U.K.: Edinburgh University Press. 255 p.
- Dobrovol'skiy, D. O., ed. 2021 (inpress).Nemetsko-russkiy slovar' aktual'noy leksiki [German-Russian dictionary: Actual vocabulary]. Moscow: Leksrus.
- Dobrovol'skiy, D. O., and Anna A. Zalizniak. 2018. Nemetskie konstruktsii s modal'nymi glagolami i ikh russkie sootvetstviya: proekt nadkorpusnoy bazy dannykh [German constructions with modal verbs and their Russian correlates: A supracorpora database project]. Komp'yuternaya lingvistika i intellektual'nye tekhnologii: po mat-lam Mezhdunar. konf. "Dialog" [Computer Linguistic and Intellectual Technologies: Conference (International) "Dialog" Proceedings]. Moscow. 17(24):172- 184.
- Dobrovol'skiy, D. O. 2020. Nemetskie modal'nye glagoly v parallel'nom korpuse i zadachi dvuyazychnoy leksikografii [German modal verbs in a parallel corpus and bilingual lexicography tasks]. Germanskie yazyki: Tekst, korpus, and perevod [German languages: Text, corpus, and translation]. Moscow: Institut yazykoznaniya RAS. 103-116.
- Dobrovol'skiy, D. O., and Anna A. Zaliznyak. 2020. Russkie konstruktsii s potentsial'no modal'nym znacheniem po dannym parallel'nykh korpusov [Russian constructions with potentially modal meanings: An analysis based on parallel corpus data]. Trudy Instituta russkogo yazyka im. V. V. Vinogradova [V. V. Vinogradov Russian Language Institute Proceedings]. 35-49.
- Zakharov, V. P. 2005. Korpusnaya lingvistika [Textbook of corpus linguistics]. St. Petersburg: SPbGU. 48 p.
- Liideling, A., and M. Kyto, eds. 2008. Corpus linguistics: An international handbook. Berlin/New York: Walter de Gruyter. Vol. 1. 794 p.
- Garside, R., G. Leech, and T. McEnery, eds. 2013. Corpus annotation: Linguistic information from computer text corpora. London/New York: Routledge. 291 p.
- Pustejovsky, J., and A. Stubbs. 2013. Natural language annotation formachine learn mg. Beijing/Cambridge/ Farnham/Koln/Sebastopol/Tokyo: O'Reilly Media. 340 p.
- KUbler, S., and H. Zinsmeister. 2015. Corpus linguistics and linguistically annotated corpora. London/New York: Bloomsbury. 320 p.
- Ide, N., and J. Pustejovsky, eds. 2017. Handbook of linguistic annotation. Dordrecht, The Netherlands: Springer Science + Business Media. 1468 p.
- Zatsman, I.M., O.Yu. Inkova, M. G. Kruzhkov, and N.A. Popkova. 2016. Predstavlenie kross-yazykovykh znaniy o konnektorakh v nadkorpusnykh bazakh dannykh [Representation of cross-lingual knowledge about connectors in suprocorpora databases]. Informatika i ee Primeneniya - Inform. Appl. 10(1):106-118.
- Zatsman, I., O. Inkova, and V. Nuriev. 2017. The construction of classification schemes: Methods and technologies of expert formation. Automatic Documentation Mathematical Linguistics 51(1):27-41.
- Baker, P., A. Hardie, and T. McEnery. 2006. A glossary of corpus linguistics. Edinburgh, U.K.: Edinburgh University Press. 187 p.
- Zatsman, I.M., V. V. Kosarik, and O.A. Kurchavova. 2008. Zadachi predstavleniya lichnostnykh i kollektivnykh kontseptov v tsifrovoy srede [Representation of individual and collective concepts in digital medium]. Informatika i ee Primeneniya - Inform. Appl. 2(3):54-69.
- Zatsman, I., M. Kruzhkov, and E. Loshchilova. 2019. Metody i sredstva informatiki dlya opisaniya struktury neodnoslovnykh konnektorov [Methods and means of informatics for multiword connectives structure description]. Struktura konnektorov i metody ee opisaniya [Connectives structure and methods of its description]. Ed.
O. Yu. Inkova. Moscow: TORUS PRESS. 205-230.
- Zatsman, I. M. 2019. Tselenapravlennoe razvitie sistem lingvisticheskikh znaniy: vyyavlenie i zapolnenie lakun [Goal-oriented development of linguistic knowledge systems: Identifying and filling of lacunae]. Informatika i ee Primeneniya - Inform. Appl. 13(1):91-98.
- Zatsman, I. 2020. Finding and filling lacunas in linguistic typologies. 15th Forum (International) on Knowledge Asset Dynamics Proceedings. Matera, Italy: Institute of Knowledge Asset Management. 780-793.
- Zatsman, I. 2020. Three-dimensional encoding of emerging meanings in AI-systems. 21st European Conference on Knowledge Management Proceedings. Reading, MA: Academic Publishing International Ltd. 878-887.
- Zatsman, I., and A. Khakimova. 2021. New knowledge discovery for creating terminological profiles of diseases. 22nd European Conference on Kn owledge Man agemen t Pro - ceedings. Reading, MA: Academic Publishing International Ltd. 837-846.
- Zatsman, I. 2021. A model of goal-oriented knowledge discovery based on human-computer symbiosis. 16th Forum (International) on Knowledge Asset Dynamics Proceedings. Rome: Arts for Business Institute. 297-312.
- Zatsman, I. M. 2021. Formy predstavleniya novogo znaniya, izvlechennogo iz tekstov [Forms representing new knowledge discovered in texts]. Informatika i ee Primeneniya-Inform. Appl. 15(3):83-90.
[+] About this article
Title
CAPTURING EVOLUTION OF LEXICOGRAPHIC KNOWLEDGE IN DYNAMIC CLASSIFICATION SYSTEMS
Journal
Informatics and Applications
2021, Volume 15, Issue 4, pp 41-49
Cover Date
2021-12-30
DOI
10.14357/19922264210406
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
evolution of lexicographic knowledge; dynamic classification system; ontology versioning; linguistic annotation; reclassification of annotations
Authors
A. A. Goncharov , I. M. Zatsman , M. G. Kruzhkov , and E. Yu. Loshchilova
Author Affiliations
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|