Informatics and Applications
2021, Volume 15, Issue 3, pp 57-62
A METHOD FOR ESTIMATING BENT, SHAPE AND SCALE PARAMETERS OF THE GAMMA-EXPONENTIAL DISTRIBUTION
- A. A. Kudryavtsev
- O. V. Shestakov
- S. Ya. Shorgin
Abstract
The article discusses a modified method of moments for estimating three of five parameters of the gamma-exponential distribution. It is proposed to estimate the distribution parameters based on its logarithmic moments. An explicit form of estimates of the bent, shape, and scale parameters is given for fixed concentration parameters of the gamma-exponential distribution; the strong consistency of the obtained estimates is justified. The article also discusses the method of eliminating unnecessary solutions to the system of equations for logarithmic article moments; a number of numerical examples are presented to illustrate the derivation of estimates from model samples. Since the analyzed distribution is closely related to the generalized gamma distribution and the generalized beta distribution of the second kind, the results of this work can be widely used in applied problems using continuous distributions with an unbounded nonnegative support for modeling.
[+] References (9)
- Kritsky, S. N., and M. F Menkel. 1946. O priemakh issledovaniya sluchaynykh kolebaniy rechnogo stoka [Methods of investigation of random fluctuations of river flow]. Trudy NIU GUGMS Ser. IV [Proceedings of GUGMS Research Institutions. Ser. IV] 29:3-32.
- Kritsky, S.N., and M.F. Menkel. 1948. Vybor krivykh raspredeleniya veroyatnostey dlya raschetov rechnogo stoka [Selection of probability distribution curves for river flow calculations]. IzvestiyaANSSSR. Otd. tekhn. nauk [Herald of the USSR Academy of Sciences. Technical Sciences] 6:15-21.
- McDonald, J. B. 1984. Some generalized functions for the size distribution of income. Econometrica 52(3):647-665.
- Kudryavtsev, A. A. 2019. O predstavlenii gamma- eksponentsial'nogo i obobshchennogo otritsatel'nogo binomial'nogo raspredeleniy [On the representation of gamma-exponential and generalized negative binomial distributions]. Informatika i ee Primeneniya - Inform. Appl. 13(4):78-82.
- Kudryavtsev, A.A., and A.I. Titova. 2017. Gamma- eksponentsial'naya funktsiya v bayesovskikh modelyakh
massovogo obsluzhivaniya [Gamma-exponential function in Bayesian queuing models]. Informatika i ee Primeneniya - Inform. Appl. 11(4):104-108.
- Kudryavtsev, A. A. 2018. Bayesovskie modeli balansa [Bayesianbalance models]. Informatika i ee Primeneniya - Inform. Appl. 12(3):18-27.
- Kudryavtsev, A. A., and O. V. Shestakov. 2020. Metod logarifmicheskikh momentov dlya otsenivaniya parametrov gamma-eksponentsial'nogo raspredeleniya [Method of logarithmic moments for estimating the gamma-exponential distribution parameters]. Informatika i ee Primeneniya - Inform. Appl. 14(3):49-54.
- Kudryavtsev, A. A., and O.V. Shestakov. 2021. Asymptotically normal estimators for the parameters ofthe gamma- exponential distribution. Mathematics 9(3):273. 13 p. doi: 10.3390/math9030273.
- Arutyunov, E. N., A. A. Kudryavtsev, and Iu. N. Nedolivko. 2021. Veroyatnostnye kharakteristiki indeksa balansa faktorov, imeyushchikh obobshchennye gamma- raspredeleniya [Probabilistic characteristics of balance index of factors with generalized gamma distribution]. Informatika i ee Primeneniya - Inform. Appl. 15(1):65-71.
[+] About this article
Title
A METHOD FOR ESTIMATING BENT, SHAPE AND SCALE PARAMETERS OF THE GAMMA-EXPONENTIAL DISTRIBUTION
Journal
Informatics and Applications
2021, Volume 15, Issue 3, pp 57-62
Cover Date
2021-09-30
DOI
10.14357/19922264210308
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
parameter estimation; gamma-exponential distribution; mixed distributions; generalized gamma distribution; method of moments; consistent estimate
Authors
A. A. Kudryavtsev , ,
O. V. Shestakov , , ,
and S. Ya. Shorgin
Author Affiliations
Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M. V Lomonosov Moscow State University, 1-52 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
Moscow Center for Fundamental and Applied Mathematics, M. V. Lomonosov Moscow State University,
1 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|