Informatics and Applications
2021, Volume 15, Issue 3, pp 9-15
FILTERING OF MARKOV JUMP PROCESSES GIVEN COMPOSITE OBSERVATIONS II: NUMERICAL ALGORITHM
- A. V. Borisov
- D. Kh. Kazanchyan
Abstract
The note represents the second, final part of the series initiated by the article Borisov, A., and
D. Kazanchyan. 2021. Filtering of Markov jump processes given composite observations I: Exact solution. Informatika i ee primeneniya - Inform. Appl. 15(2):12-19. The authors propose a new numerical algorithm of the optimal state estimation for the Markov jump processes given observable both the counting processes and the diffusion ones with the multiplicative noises. The authors approximate the initial continuous-time estimation problem by a sequence of the corresponding filtering problems given the time-discretized observations. The paper contains the explicit recursive form of the discretized estimate and introduces its one-step precision characteristic along with dependence of the characteristics on the utilized numerical estimation scheme.
[+] References (9)
- Borisov, A., and D. Kazanchyan. 2021. Fil'tratsiya sostoyaniy markovskikh skachkoobraznykh protsessov po kompleksnym nablyudeniyam I: tochnoe reshenie zadachi [Filtering of Markovjump processes given composite obser-vations I: Exact solution]. Informatika i ee Primeneniya - Inform. Appl. 15(2):12-19.
- Borisov, A. 2019. Chislennye skhemy fil'tratsii markovskikh skachkoobraznykh protsessov po diskretizovannym nablyudeniyam I: kharakteristiki tochnosti [Numerical schemes of Markov jump process filtering given discretized observations I: Accuracy characteristics]. Informatika i ee Primeneniya - Inform. Appl. 13(4):68-75. doi: 10.14357/ 19922264190411.
- Borisov, A. 2020. Chislennye skhemy fil'tratsii markovskikh skachkoobraznykh protsessov po diskretizovannym nablyudeniyam II: sluchay additivnykh shumov [Numerical schemes ofMarkov jump process filtering given discretized observations II: Additive noises case]. Informatika i ee primeneniya - Inform. Appl. 14(1):17-23. doi: 10.14357/ 19922264200103.
- Borisov, A. 2020. Chislennye skhemy fil'tratsii markovskikh skachkoobraznykh protsessov po diskretizovannym nablyudeniyam III: sluchay mul'tiplikativnykh shumov [Numerical schemes of Markov jump process filtering given discretized observations III: Multiplicative noises case]. Informatika i ee primeneniya - Inform. Appl. 14(2):10-18. doi: 10.14357/19922264200103.
- Ishikawa, Y., and H. Kunita. 2006. Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps. Stoch. Proc. Appl. 116:1743-1769. doi: 10.1016/j.spa.2006.04.013.
- Borisov, A., G. Miller, and A. Stefanovich. 2018. Controllable Markov jump processes. I. Optimum filtering based on complex observations. J. Computer Systems Sciences International. 57(6):890-906. doi: 10.1134/ S1064230718060035.
- Liptser, R., and A. Shiryaev. 2001. Statistics of random pro-cesses I: General theory. Berlin/Heidelberg: Springer. 427 p.
- Isaacson, E., and H. Keller. 1994. Analysis of numerical methods. New York, NY: Dover Publications. 541 p.
- Bertsekas, D., and S. Shreve. 1978. Stochastic optimal control: The discrete-time case. Boston, MA: Athena Scientific. 330 p.
[+] About this article
Title
FILTERING OF MARKOV JUMP PROCESSES GIVEN COMPOSITE OBSERVATIONS II: NUMERICAL ALGORITHM
Journal
Informatics and Applications
2021, Volume 15, Issue 3, pp 9-15
Cover Date
2021-09-30
DOI
10.14357/19922264210302
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
Markov jump process; optimal filtering; multiplicative observation noises; time-discretized observations; approximation precision
Authors
A. V. Borisov , , and D. Kh. Kazanchyan
Author Affiliations
Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
Moscow Aviation Institute (National Research University), 4 Volokolamskoe Shosse, Moscow 125080, Russian Federation
Moscow Center for Fundamental and Applied Mathematics, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, 1-52 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
|