Informatics and Applications
2021, Volume 15, Issue 2, pp 44-51
SOME PROPERTIES OF GAUSSIAN MIXTURES AND APPLICATIONS TO MAGNETOENCEPHALOGRAPHY PROBLEMS
- M. B. Goncharenko
- T. V. Zakharova
Abstract
The article is dedicated to research of various properties of compound probability distributions (mixture distributions). Special attention is paid to the case when the mixed distribution is Gaussian. The authors establish the similarities in the behavior of Gaussian mixtures and Gaussian distributions during transformations. The authors study applications to magnetoencephalographic brain research. The authors determine the conditions under which the Aitken estimator (generalized least squares) is applicable for localization of sources of neurophysiologic activity in the case of noise having compound Gaussian distribution.
[+] References (12)
- Titterington, D. M., A. F. M. Smith, and U. E. Makov 1985. Statistical analysis of finite mixture distributions. New York, NY: Wiley. 243 p.
- McLachlan, G., and D. Peel. 2000. Finite mixture models. New York, NY: Wiley & Sons. 419 p.
- Goncharenko, M. B., and T. V. Zakharova. 2018. Osobennosti povedeniya konechnykh smesey normal'nykh raspredeleniy [Features of behavior of finite mixtures of normal distributions]. Vestnik Moskovskogo Universiteta. Ser. 15: Vychislitel'naya matematika i kibernetika [Bull. Moscow State University. Ser. 15: Comput. Math., Cy- bern.] 3:30-36.
- Teicher, H. 1960. On the mixture of distributions. Ann. Math. Stat. 31(1):55-73.
- Teicher, H. 1963. Identifiability of finite mixtures. Ann. Math. Stat. 34(4):1265-1269.
- Korolev, V. Yu. 2007. EM-algoritm, ego modifikatsii i ikh primenenie k zadache razdeleniya smesey veroyatnostnykh raspredeleniy. Teoreticheskiy obzor [EM algorithm modifi-cations and their application to the separation of mixtures of probability distributions. Theoretical review]. Moscow: IPI RAN. 94 p.
- Borovkov, A. A. 2010. Matematicheskaya statistika [Mathematical statistics]. 4th ed. Moscow: Lan. 704 p.
- Hamalainen, M., R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa. 1993. Magnetoencephalography - theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65(2):413-497.
- Zakharova, T.V., S. Yu. Nikiforov, M. B. Goncharenko, M. A. Dranitsyna, G. A. Klimov, M. Sh. Khaziakhmetov, and N. V. Chayanov. 2012. Metody obrabotki signalov dlya lokalizatsii nevospolnimykh oblastey golovnogo mozga [Signal processing methods for localization of nonre-newable brain regions]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 22(2):157-175.
- Goncharenko, M. B., and T. V. Zakharova. 2018. Veroyatnostnyy podkhod k resheniyu obratnoy zadachi magnitoentselografii [Probabilistic approach to solving the magnetoencephalography inverse problem]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 28(1):35- 52.
- Zakharova, T. V, P I. Karpov, and V. M. Bugaevskii. 2017. Localization of the activity source in the inverse problem of magnetoencephalography. Comput. Math. Model. 28(2):148-157.
- Draper, N., and H. Smith. 1998. Applied regression analysis. 3rd ed. New York, NY: John Wiley & Sons, Inc. 736 p.
[+] About this article
Title
SOME PROPERTIES OF GAUSSIAN MIXTURES AND APPLICATIONS TO MAGNETOENCEPHALOGRAPHY PROBLEMS
Journal
Informatics and Applications
2021, Volume 15, Issue 2, pp 44-51
Cover Date
2021-06-30
DOI
10.14357/19922264210207
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
compound distributions; compound Gaussian distribution; compound Student distribution; compound lognormal distribution; compound gamma distributions; magnetoencephalography; MEG; inverse MEG problem; Aitken's estimator
Authors
M. B. Goncharenko and T. V. Zakharova ,
Author Affiliations
INTEL A/O, 17-4 Krylatskaya Str., Moscow 121614, Russian Federation
Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M. V Lomonosov Moscow State University, 1-52 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|