Informatics and Applications
2020, Volume 14, Issue 2, pp 104-110
INTEGRATION PLATFORM FOR MULTISCALE MODELING OF NEUROMORPHIC SYSTEMS
- K. K. Abgaryan
- E. S. Gavrilov
Abstract
The current multilevel resistive memory elements allow increasing the integration density of nonvolatile memory as well as designing and creating systems with a parallel computing mechanism. Such devices are based on memristor elements necessary for developing the foundations of analog neuromorphic networks that are used to solve data mining problems. However, the use of memristors as a part of neuromorphic devices encounters a number of problems such as the scatter of the switching parameters (voltage and memory window) from cell to cell, asymmetry and nonlinear effects, and others. Such problems dictate the need to create original simulation models and new software tools that will allow one to evaluate the influence of disturbing factors on the predictive accuracy and network learning process. In this paper, to solve the problem of multiscale modeling of neuromorphic systems, the authors use the original information technology for constructing multiscale models. For its practical implementation, an integration platform has been built that allows one to evaluate the influence of disturbing factors on the predictive accuracy and learning process of a neuromorphic network and in the future, it will be able to provide information for a reasonable choice of materials, configuration, and topology of memory cells of new-generation computers.
[+] References (13)
- Abgaryan, K. K. 2017. Mnogomasshtabnoe modelirovanie v zadachakh strukturnogo materialovedeniya [Multiscale modeling in material science problems]. Moscow: MAKS Press. 284 p.
- Abgaryan, K. K. 2018. Informatsionnaya tekhnologiya postroyeniya mnogomasshtabnykh modeley v zadachakh vychislitel'nogo materialovedeniya [Information technology is the construction of multi-scale models in problems of computational materials science]. Sistemy Vysokoy Dos- tupnosti [High Availability Systems] 14(2):9-15.
- Brodskiy, Yu. I. 2013. Model'nyy sintez i model'no- oriyentirovannoe programmirovanie [Model synthesis and model oriented programming]. Moscow: CC RAS. 142 p.
- Evans, E. 2003. Domain-driven design: Tackling complexity in the heart of software. Addison-Wesley Professional. 560 p.
- Abgaryan, K. K., E. S. Gavrilov, and A.M. Marasanov.
2017. Informatsionnaya podderzhka zadach mnogomasshtabnogo modelirovaniya kompozitsionnykh materialov [Multiscale modeling for composite materials computer simulation support]. Int. J. Open Information Technologies 12:24-29.
- Fowler, M., and P. J. Sadalage. 2012. NoSQL distilled: A brief guide to the emerging world of polyglot persistence. Addison-Wesley Professional. 190 p.
- Kohn, W, and L. J. Sham. 1965. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140:1133-1138.
- Gao, D., H. Deng, H. Heinisch, and R. Kurtz. 2011. A new Fe-He interatomic potential based on ab initio calculations in a-Fe. J. Nucl. Mater. 418(1):115-120.
- Lee, B.-J., M. I. Baskes, H. Kim, and Ya. K. Cho. 2001. Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Phys. Rev. B 64:184102. doi: 10.1103/PhysRevB.64.184102.
- Sadi, T., A. Mehonic, L. Montesi, M. Buckwell, A. Kenyon, and A. Asenov. 2018. Investigation of resistance switching in SiOx RRAM cells using a 3D multi-scale kinetic Monte Carlo simulator. J. Phys. Condens. Matter 30(8):084005. doi: 10.1088/1361-648X/aaa7C1.
- Morozov, A. Yu., D.L. Reviznikov, and K. K. Abgaryan.
2019. Voprosy realizatsii neyrosetevykh algoritmov na memristornykh krossbarakh [Implementation of neural network algorithms using memristor crossbars]. Izvestiya Vysshikh Uchebnykh Zavedeniy. Materialy Elektronnoy Tekhniki [Proceedings of Higher Educational Institutions. High Materials of Electronics Engineering] 22(4).
- Newman, S. 2015. Building microservices. Sebastopol, CA: O'Reilly Media. 282 p.
- Abgaryan, K. K., and E. S. Gavrilov. 2019. Informatsionnaya podderzhka integratsionnoy platformy mnogomasshtabnogo modelirovaniya [Informational support of the multiscale modeling integration platform]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 29(1):53-62.
[+] About this article
Title
INTEGRATION PLATFORM FOR MULTISCALE MODELING OF NEUROMORPHIC SYSTEMS
Journal
Informatics and Applications
2020, Volume 14, Issue 2, pp 104-110
Cover Date
2020-06-30
DOI
10.14357/19922264200215
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
multi-scale modeling; multilevel memory elements; neuromorphic networks; predictive modeling; memristor; integration platform; software package
Authors
K. K. Abgaryan , and E. S. Gavrilov ,
Author Affiliations
Dorodnicyn Computing Center, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 40 Vavilov Str., Moscow 119333, Russian Federation
Moscow Aviation Institute (National Research University), 4 Volokolamskoe Shosse, Moscow 125080, Russian Federation
|