Informatics and Applications
2020, Volume 14, Issue 2, pp 103
SOLUTION OF THE UNCONDITIONAL EXTREMAL PROBLEM FOR A LINEAR-FRACTIONAL INTEGRAL FUNCTIONAL DEPENDENT ON THE PARAMETER
- P. V. Shnurkov
- K. A. Adamova
Abstract
The paper is devoted to the study of the unconditional extremal problem for a fractional linear integral functional defined on a set of probability distributions. In contrast to results proved earlier, the integrands of the integral expressions in the numerator and the denominator in the problem under consideration depend on a real optimization parameter vector. Thus, the optimization problem is studied on the Cartesian product of a set of probability distributions and a set of admissible values of a real parameter vector. Three statements on the extremum of a fractional linear integral functional are proved. It is established that, in all the variants, the solution of the original problem is completely determined by the extremal properties of the test function of the linear-fractional integral functional; this function is the ratio of the integrands of the numerator and the denominator. Possible applications of the results obtained to problems of optimal control of stochastic systems are described.
[+] References (13)
- Shnurkov, PV. 2016. Solution of the unconditional extremum problem for a linear fractional integral functional on a set of probability measures. Dokl. Math. 94(2):550- 554.
- Shnurkov, P.V., A. K. Gorshenin, and V.V. Belousov
2016. Analiticheskoe reshenie zadachi optimal'nogo upravleniya polumarkovskim protsessom s konechnym mnozhestvom sostoyaniy [An analytic solution of the optimal control problem for a semi-Markov process with a finite set of states]. Informatika i ee Primeneniya - Inform. Appl. 10(4):72-88.
- Bajalinov, Å. Â. 2003. Linear-fractional programming. Theory, methods, applications and software. Boston- Dordrecht-London: Kluwer Academic Publs. 423 p.
- Joshi, V. D., E. Singh, and N. Gupta. 2008. Primal-dual approach to solve linear fractional programming problem. J. Appl. Mathematics Statistics Informatics 4(1): 61-69.
- Hasan, M.B., and S. Acharjee. 2011. Solving LFPby converting it into a single LP Int. J. Operations Research 8(1): 1-14.
- Borza, M., A. S. Rambely, and M. Saraj. 2012. Solving linear fractional programming problems with interval coefficients in the objective function. A new approach. Appl. Math. Sciences 6(69-72):3443-3452.
- Barzilovich, E.Yu., and V.A. Kashtanov. 1971. Nekotorye matematicheskie voprosy teorii obsluzhivaniya slozhnykh
sistem [Some mathematical questions in theory of complex systems maintenance]. Moscow: Sovetskoe radio. 272 p.
- Gnedenko, B. V., ed. 1983. Voprosy matematicheskoy teorii nadezhnosti [Questions of mathematics reliability theory]. Moscow: Radio i svyaz'. 376 p.
- Halmos, P 1950. Measure theory. Graduate texts in mathematics ser. Springer-Verlag New York. 316 p.
- Shiryaev, A. N. 2011. Veroyatnost'-l [Probability-1]. Moscow: MTSNMO. 552 p.
- Kolmogorov, A. N., and S. V. Fomin. 2004. Elementy teorii funktsiy i funktsional'nogo analiza [Elements of function theory and functional analysis]. Moscow: Fizmatlit. 572 p.
- Shnurkov, P. V., and K. A. Adamova. 2020. Prilozhenie k stat'e: reshenie zadachi bezuslovnogo ekstremuma dlya drobno-lineynogo integral'nogo funktsionala, zavisyashchego ot parametra [Appendix to article: Solution of the unconditional extremal problem for a linear- fractional integral functional depending on the parameter]. Available at: http://www.ipiran.ru/publications/ publications/supplement.pdf (accessed April 15, 2020).
- Shnurkov, P, and K. Adamova. 2019. Solution of the unconditional extremal problem for a linear-fractional integral functional depending on the parameter. arXiv.org. 14 p. Available at: https://arxiv.org/abs/1906.05824 (accessed April 5, 2020).
[+] About this article
Title
SOLUTION OF THE UNCONDITIONAL EXTREMAL PROBLEM FOR A LINEAR-FRACTIONAL INTEGRAL FUNCTIONAL DEPENDENT ON THE PARAMETER
Journal
Informatics and Applications
2020, Volume 14, Issue 2, pp 98-103
Cover Date
2020-06-30
DOI
10.14357/19922264200214
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
linear-fractional integral functional; unconditional extremal problem for a fractional linear integral functional; test function; optimal control problems for Markov and semi-Markov random processes
Authors
P. V. Shnurkov and K. A. Adamova
Author Affiliations
National Research University Higher School of Economics, 34 Tallinskaya Str., Moscow 123458, Russian Federation
Academician Pilyugin Center, 1 Vvedenskogo Str., Moscow, 117342, Russian Federation
|