Informatics and Applications
2020, Volume 14, Issue 1, pp 56-62
IMPROVEMENT OF THE ACCURACY OF SOLUTION OF TASKS FOR THE ACCOUNT OF THE CONSTRUCTION OF BOUNDARY CONDITIONS
- S. M. Serebryanskii
- A. N. Tyrsin
Abstract
The problems of stability of the solution of inverse problems with respect to the exact setting of boundary conditions are considered. In practical applications, as a rule, the theoretical form of the functional dependence of the boundary conditions is a form that is not defined or not known, and there are also random measurement errors. Studies have shown that this leads to a significant reduction in the accuracy of solving the inverse problem. In order to increase the accuracy of solving inverse problems, it was proposed to refine the functional form of the boundary conditions by recognizing the form of the mathematical model of dependence with the subsequent approximation by this function of the behavior of a physical quantity at the boundary. Dependency recovery was performed using dependency recognition methods based on structural difference schemes and inverse mapping recognition. Model examples of implementation in the presence of additive random measurement errors and an unknown type of dependence of the boundary conditions are given.
[+] References (20)
- Ivanov, V.K., I. V. Melnikova, and A. I. Filinkov. 1995. Differentsial'no-operatornye uravneniya i nekorrektnye zadachi [Differential-operator equations and ill-posed problems]. Moscow: Fizmatlit. 176 p.
- Ivanov, V. K., V. V. Vasin, and V. P. Tanana. 1978. Teoriya lineynykh nekorrektnykh zadach i ee prilozheniya [Theory of linear ill-posed problems and its applications]. Moscow: Nauka. 206 p.
- Serebryanskii, S.M. 2010. Ob otsenkakh pogreshnosti metodov priblizhennogo resheniya odnoy obratnoy zadachi [On estimating the errors ofapproximate solution
methods for an inverse problem]. Sibirskiy zh. industrial'noy matematiki [Siberian J. Iindustrial Mathematics] 2(42):135-148.
- Nalimov, V.V. 1971. Teoriya eksperimenta [Theory of experiment]. Moscow: Nauka, Fizmatlit. 208 p.
- Aivazyan, S. A., I. S. Enyukov, and L. D. Meshalkin. 1985. Prikladnaya statistika: issledovanie zavisimostey [Applied statistics: The study of dependencies]. Moscow: Finansy
i statistika. 487 p.
- Kleiner, G.B., and S. A. Smolyak. 2000. Ekonometricheskie zavisimosti: printsipy i metody postroeniya [Econometric dependences: Principles and methods of construction]. Moscow: Nauka. 104 p.
- Tyrsin, A. N. 2005. Identifikatsiya zavisimostey na osnove modeley avtoregressii [Identification of dependencies based on autoregression models]. Optoelectronics Instru-mentation Data Processing 41(1):43-49.
- Orlov, A. 1.2007. Prikladnaya statistika [Applied statistics]. 2nd ed. Moscow: Ekzamen. 671 p.
- Tyrsin, A. N., and S. M. Serebryanskii. 2015. Dependence identification in a time series on the basis of structural difference schemes. Optoelectronics Instrumentation Data Processing 51(2):149-154.
- Tyrsin, A. N., and S.M. Serebryanskii. 2016. Raspoznavanie tipa zavisimosti na osnove obratnogo otobrazheniya [Recognition of dependences on the basis of inverse mapping]. Informatika i ee Primeneniya - Inform. Appl. 10(2):58-64.
- Tikhonov, A. N. 1943. Ob ustoychivosti obratnykh zadach [On the stability of inverse problems]. Dokl. Akad. nauk SSSR 39(5):195-198.
- Tanana, V. P. 1981. Metody resheniya operatornykh uravneniy [Methods for solving operator equations]. Moscow: Nauka. 160 p.
- Alifanov, O.M. 1988. Obratnye zadachi teploobmena [Inverse heat transfer problems]. Moscow: Mechanical En-gineering. 279 p.
- Tanana, V. P., and N. M. Yaparova. 2006. Ob optimal'nom po poryadku metode resheniya uslovno-korrektnykh zadach [On the optimal order method for solving ill- posed problems]. Sibirskiy zh. vychislitel'noy matematiki [Siberian J. Numerical Mathematics] 9(4):353-368.
- Serebryansky, S.M., and A. N. Tyrsin. 2018. Povyshenie tochnosti resheniya obratnykh zadach pri oshibkakh v nachal'nykh dannykh [Improving the accuracy of solving inverse problems with inherent errors]. Vestnik Buryatsko- go gosudarstvennogo universiteta. Matematika, informatika [BSU Bull. Mathematics Informatics] 4:58-71.
- Ermakov, S. E. 1975. Metod Monte-Karlo i smezhnye voprosy [Monte-Carlo method and related questions]. 2nd ed. Moscow: Nauka, Fizmatlit. 472 p.
- Mikhailov, G.A., and A.V Voytishek. 2006. Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo [Numerical statistical modeling. Monte-Carlo methods]. Moscow: Akademiya. 368 p.
- Semenychev, V. K. 2004. Identifikatsiya ekonomicheskoy dinamiki na osnove modeley avtoregressii [Identification of economic dynamics on the basis of autoregressive models]. Samara: SNTs RAN. 243 p.
- Zoteev, V. E. 2009. Parametricheskaya identifikatsiya dissipativnykh mekhanicheskikh sistem na osnove raznostnykh uravneniy [Parametric identification of dissipative mechanical systems on the basis of difference equations]. Moscow: Mashinostroenie. 344 p.
- Serebryanskii, S. M. 2014. Raspoznanie zavisimostey na osnove strukturnykh raznostnykh skhem [Recognition of dependences on the basis of structural difference schemes]. Certificate of registration of electronic resource No. 19869.
[+] About this article
Title
IMPROVEMENT OF THE ACCURACY OF SOLUTION OF TASKS FOR THE ACCOUNT OF THE CONSTRUCTION OF BOUNDARY CONDITIONS
Journal
Informatics and Applications
2020, Volume 14, Issue 1, pp 56-62
Cover Date
2020-03-30
DOI
10.14357/19922264200108
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
inverse problem; recognition; functional dependence; model; difference schemes; inverse function; sampling; variance; approximation
Authors
S. M. Serebryanskii and A. N. Tyrsin
Author Affiliations
Troitsk Branch of Chelyabinsk State University, 9 S. Rasin Str., Troitsk 457100, Russian Federation
Science and Engineering Center "Reliability and Resource of Large Systems and Machines," Ural Branch of the Russian Academy of Sciences; 54a Studencheskaya Str., Yekaterinburg 620049, Russian Federation
|