Informatics and Applications
2020, Volume 14, Issue 1, pp 48-55
RISK-NEUTRAL DYNAMICS FOR THE ARIMA-GARCH RANDOM PROCESS WITH ERRORS DISTRIBUTED ACCORDING TO THE JOHNSON'S Su LAW
- A. R. Danilishin
- D. Yu. Golembiovsky
Abstract
Risk-neutral world is one of the fundamental principles of financial mathematics, for definition of a fair value of derivative financial instruments. The article deals with the construction of risk-neutral dynamics for the ARIMA-GARCH (Autoregressive Integrated Moving Average, Generalized AutoRegressive Conditional Heteroskedasticity) random process with errors distributed according to the Johnson's SU law. Methods for finding risk-neutral coefficients require the existence of a generating function of moments (examples of such transformations are the Escher transformation, the extended Girsanov principle). A generating function of moments is not known for Student and Johnson's SU distributions. The authors form a generating function of moments for the Johnson's SU distribution and prove that a modification of the extended Girsanov principle may obtain a risk-neutral measure with respect to the chosen distribution.
[+] References (14)
- Hull, J. 2018. Options, futures, and other derivatives. 10th ed.Pearson.896 p.
- Patton, A. 2015. Quantitative finance. London:University
of London Press Publisher. 65p.
- Akgiray, V. 1989. Conditional heteroscedasticity in time
series of stock returns: Evidence and forecasts. J. Bus.
62(1):55–80. doi:10.1086/296451
- Terasvirta, T. 2009. An introduction to univariate
GARCH models. Handbook of financial time series. Eds. T.G. Andersen, R.A. Davis, J.-P. Kreiss, and
Th.V. Mikosch. Berlin–Heidelberg: Springer. 10:17–42.
doi:10.1007/978-3-540-71297-8 1.
- Follmer, H., and A. Schied. 2002. Stochastic finance: An introduction in discrete time. Berlin: Walter de Gruyter. 422 p.
- Bollerslev, T. 1987. A conditionally heteroskedastic time series model for speculative prices and rates of return. Rev. Econ. Stat. 69(3):542-547. doi: 10.2307/1925546.
- Simonato, J. G. 2012. GARCH processes with skewed and leptokurtic innovations: Revisiting the Johnson SU case. Available at: https://ssrn.com/abstract=2060994 (accessed May 18, 2012).
- Elliott, R. J., and D. B. Madan. 1998. A Discrete time equivalent martingale measure. Math. Financ. 8(2):127- 152. doi: 10.1111/1467-9965.00048.
- Yi, X. 2013. Comparison of option pricing between ARMA-GARCH and GARCH-M models. London, On-tario, Canada: University ofWestern Ontario. MoS Thesis. 73 p.
- Enrique, R., and L. Escobar. 2006. Using moment gener-ating functions to derive mixture distributions. Am. Stat. 60(1):75-80. doi: 10.1198/000313006X90819.
- Simonato, J. G., and L. Stentoft. 2015. Which pricing approach for options under GARCH with nonnormal innovations? Available at: https://www.degroote. mcmaster.ca/files/2015/11/SimonatoStentoft.pdf (ac-cessed November 2015).
- Williams, D. 1991. Probability with martingales. Cambridge: Cambridge University Press. 251 p.
- Cameron, R. H., and W T. Martin. 1945. Transformation of Wiener integrals under a general class of linear transfor-mations translations. T. Am. Math. Soc. 58:184-219. doi: 10.1090/S0002-9947-1945-0013240-1.
- Bell, D. 1991. Transformations of measures on an infinite-dimensional vector space. Seminar on stochastic processes, 1990. Eds. E. Qinlar, P. J. Fitzsimmons, and R. J. Williams. Progress in probability book ser. Birkhauser Boston. 24:15-25. doi: 10.1007/978-l-4684-0562-0_3.
[+] About this article
Title
RISK-NEUTRAL DYNAMICS FOR THE ARIMA-GARCH RANDOM PROCESS WITH ERRORS DISTRIBUTED ACCORDING TO THE JOHNSON'S SU LAW
Journal
Informatics and Applications
2020, Volume 14, Issue 1, pp 48-55
Cover Date
2020-03-30
DOI
10.14357/19922264200107
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
ARIMA; GARCH; risk-neutral measure; Girsanov extended principle; Johnson's SU ; option pricing
Authors
A. R. Danilishin and D. Yu. Golembiovsky ,
Author Affiliations
Department of Operations Research, Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, 1-52 Leninskiye Gory, Moscow 119991, GSP-1, Russian Federation
Department of Banking, Sinergy University, 80-G Leningradskiy Prospect, Moscow 125190, Russian Federation
|