Informatics and Applications
2019, Volume 13, Issue 4, pp 97-106
DIGITAL ENCODING OF CONCEPTS
Abstract
The tasks of encoding concepts of human knowledge in the digital medium of computers and networks are of particular relevance in connection with the widespread use of artificial intelligence systems in the world. In the process of expanding the scope of their applications, the range of categories of encoded concepts is increasing.
In addition to conventional concepts, which have stable forms of their presentation, for example, by the words of natural languages, it is often necessary to encode personal and collective concepts in the digital medium. Moreover, sometimes, it is necessary to take into account the degree of their socialization (the Wierzbicki&Nakamori's term) and reflect the dynamics of their change over time, as well as the stages of their transformation into conventional concepts. In the time dimension, the spectrum of scales has expanded for describing the dynamics of concepts of human knowledge. If earlier scales were used with units of measuring the dynamics of concepts in hundreds and tens of years (less often scales with accuracy up to a year and a month were used), then for personal and collective concepts, it is necessary to use a scale that fixes their dynamics up to days, and sometimes hours and minutes.
The goal of the paper is to describe the asymmetry problem encountered in the encoding process of concepts in the digital medium. The asymmetry significantly complicates the processes of representing human knowledge in artificial intelligence systems. To solve this problem, it is proposed to use at the same time encoding of both concepts of the listed categories and forms of their expression in the digital medium. The proposed approach is illustrated by the example of an intelligent vocabulary system that uses encoding of both concepts and words, which are verbal forms of concept representation.
[+] References (35)
- Zatsman, I.M., V. V. Kosarik, and O.A. Kurchavova.
2008. Zadachi predstavleniya lichnostnykh i kollektivnykh kontseptov v tsifrovoy srede [Representation of individual and collective concepts in digital medium]. Informatika i ee Primeneniya - Inform. Appl. 2(3):54-69.
- Zatsman, I. M. 2019. Interfeysy tret'ego poryadka v informatike [Third-order interfaces in informatics]. Informatika i ee Primeneniya - Inform. Appl. 13(3):82-89.
- Wierzbicki, A. P., and Y. Nakamori. 2006. Basic dimensions of creative space. Creative space: Models of creative processes for knowledge civilization age. Berlin-Heidelberg: Springer Verlag. 59-90.
- Wierzbicki, A. P., and Y. Nakamori. 2007. Knowledge sciences: Some new developments. Betriebswirtsch 77(3):271-295.
- Rosenbloom, P. 2013. On computing: The fourth great scientific domain. Cambridge: MIT Press. 308 p.
- Denning, P., and P. Rosenbloom. 2009. Computing: The fourth great domain of science. Commun. ACM 52(9):27-
29.
- Zatsman, I. 2012. Tracing emerging meanings by computer: Semiotic framework. 13th European Conference on Knowledge Management Proceedings. Reading: Academic Publishing International Ltd. 2:1298-1307.
- Zatsman, I. 2014. Table of interfaces of informatics as computer and information science. Sci. Tech. Inf. Proc. 41(4):233-246.
- Baars, B., and N. Gage. 2010. Cognition, brain, and consciousness: Introduction to cognitive neuroscience. Amsterdam: Academic Press/Elsevier. 677 p.
- Eco, U. 1976. A theory of semiotics. Bloomington, IN: Indiana University Press. 356 p.
- Schalk, G., and E. C. Leuthardt. 2011. Brain-computer interfaces using electrocorticographic signals. IEEE Rev. Biomed. Eng. 4(1):140-154.
- Sunny, T. D., T. Aparna, P. Neethu, J. Venkateswaran, V. Vishnupriya, and P. S. Vyas. 2016. Robotic arm with brain-computer interfacing. Proc. Tech. 24:1089-1096.
- Mueller, J. P., and L. Massaron. 2018. Artificial intelligence for dummies. Hoboken, NJ: John Wiley & Sons. 316 p.
- Gardner, H. 2004. Frames of mind: The theory of multiple intelligences. New York, NY: Basic Books. 440 p.
- Goncharov, A., and O. Inkova. 2019. Metodika poiska implitsitnykh logiko-semanticheskikh otnosheniy v tekste [Methods for identification of implicit logical-semantic relations in texts]. Informatika i ee Primeneniya - Inform. Appl. 13(3):100-107.
- Goncharov, A., andO. Inkova. 2019. Sposoby vyrazheniya prichinnykh otnosheniy v russkom yazyke: opyt analiza s ispol'zovaniem krosslingvisticheskoy nadkorpusnoy bazy dannykh [Means of expressing causal relations in Russian: Analysis using a cross-linguistic supracorpora database]. Russkaya grammatika: aktivnye protsessy v yazyke i rechi: Sb. nauchnykh trudov Mezhdunar. nauchnogo simpoziu- ma [Russian Grammar: Active Processes in Language
and Discourse. Scientific Symposium (International) Proceedings]. Yaroslavl: RIO YAGPU. 385-396.
- Inkova, Î., and E. Manzotti. 2019 (in press). Svyaznost' teksta: mereologicheskie logiko-semanticheskie otnosheniya [Text coherence: Mereological logical semantic relations]. Moscow: LRC Publishing House.
- Lyutyy, A. A. 2002. Yazykkarty:sushchnost', sistema,funk- tsii [Map language: Essence, system, functions]. Moscow: GI RAS. 327 p.
- Inkova, Î., and M. G. Kruzhkov. 2019. Socheta- emost' logiko-semanticheskikh otnosheniy: kolichestven- nye metody analiza [Compatibility of logical semantic relations: Methods of quantitative analysis]. Informatika i ee Primeneniya - Inform. Appl. 13(2):83-91.
- Mann, W. C., and S. A. Thompson. 1988. Rhetoricalstruc- ture theory: Toward a functional theory of text organization. Text 8(3):243-281.
- Breindl, E., A. Volodina, and U. H. WaBner. 2014. Hand- buch der deutschen Konnektoren 2. Semantik der deutschen Satzverknupfer. Berlin: Walter de Gruyter. 1327 p.
- Bunt, H., and R. Prasad. 2016. ISO DR-Core (ISO 24617-8): Core concepts for the annotation of discourse relations. 12th Joint ACL-ISO Workshop on Interoperable Semantic Annotation Proceedings. Portoroz. 45-54.
- Sanders, T.J.M., V. Demberg, J. Hoek, M.C.J. Schol- man, A. F. Torabi, S. Zufferey, and J. Evers-Vermeul. 2018. Unifying dimensions in coherence relations: How various annotation frameworks are related. Corpus Linguist. Ling. 71 p. Available at: https://www.degruyter.com/ view/j/cllt.ahead-of-print/cllt-2016-0078/cllt-2016- 0078.xml?rskey=Vr3MhX&result=1 (accessed September 30, 2019).
- Ramiro, C., M. Srinivasan, B.C. Malt, and Y. Xu. 2018. Algorithms in the historical emergence of word senses. P. Natl. Acad. Sci. USA 115(10): 2323-2328.
- Kay, C., J. Roberts, M. Samuels, I. Wotherspoon, and M. Alexander. 2015. The historical thesaurus of English. Version 4.2. Glasgow, U.K.: University of Glasgow. Available at: https://historicalthesaurus.arts.gla.ac.uk (accessed September 30, 2019).
- Kay, C., J. Roberts, M. Samuels, I. Wotherspoon, and M. Alexander. 2015. The historical thesaurus of English. Version 4.2: Face. Available at: https://
historicalthesaurus.arts.gla.ac.uk/category-selection/ ?qsearch=face (accessed September 30, 2019).
- The British National Corpus (Oxford University Computing Services). Available at: http://www.natcorp.ox.ac.uk (accessed September 30, 2019).
- Zatsman, I. 2003. Kontseptual'nyy poisk i kachestvo infor- matsii [Conceptual retrieval and quality of information]. Moscow: Nauka. 272 p.
- Zatsman, I. 2009. Semioticheskaya model' vzaimosvyazey kontseptov, informatsionnykh ob"ektov i komp'yuternykh kodov [Semiotic model of relationships of concepts, information objects, and computer codes]. Informatika i ee Primeneniya - Inform. Appl. 3(2):65-81.
- Zatsman, I. 2015. Protsessy tselenapravlennoy generatsii i razvitiya kross-yazykovykh ekspertnykh znaniy: semi- oticheskie osnovaniya modelirovaniya [Goal-oriented processes of cross-lingual expert knowledge creation: Semiotic foundations for modeling]. Informatika i ee Primeneniya - Inform. Appl. 9(3):106-123.
- Vakulenko, V., and I. Zatsman. 2019. Printsipy sozdaniya i funktsii intellektual'noy slovarnoy sistemy [Framework for the design of intellectual dictionary systems and their primary functions]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 29(4):96-105.
- Zatsman, I. M. 2018. Implitsirovannye znaniya: osno- vaniya i tekhnologii izvlecheniya [Implied knowledge: Foundations and technologies of explication]. Informati- ka i ee Primeneniya - Inform. Appl. 12(3):74-82.
- Zatsman, I. M. 2018. Stadii tselenapravlennogo izvlecheniya znaniy, implitsirovannykh v parallel'nykh tekstakh [Stages of goal-oriented discovery of knowledge implied in parallel texts]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 28(3):175-188.
- Zatsman, I. M. 2019. Tselenapravlennoe razvitie sistem lingvisticheskikh znaniy: vyyavlenie i zapolnenie lakun [Goal-oriented development of linguistic knowledge systems: Identifying and filling of lacunae]. Informatika i ee Primeneniya - Inform. Appl. 13(1):91-98.
- Goncharov, A. A., and I. M. Zatsman. 2019. Informatsionnye transformatsii parallel'nykh tekstov v zadachakh izvlecheniya znaniy [Information transformations of parallel texts in knowledge extraction]. Sistemy i Sredstva Informatiki - Systems and
Means of Informatics 29(1):180–193.
[+] About this article
Title
DIGITAL ENCODING OF CONCEPTS
Journal
Informatics and Applications
2019, Volume 13, Issue 4, pp 97-106
Cover Date
2019-12-30
DOI
10.14357/19922264190416
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
knowledge encoding; polyadic computing; digital medium; artificial intelligence; categories of concepts; socialization of knowledge concepts
Authors
I. M. Zatsman
Author Affiliations
Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|