Informatics and Applications
2019, Volume 13, Issue 4, pp 76-80
ON THE REPRESENTATION OF GAMMA-EXPONENTIAL AND GENERALIZED NEGATIVE BINOMIAL DISTRIBUTIONS
Abstract
For more than a century and a half, gamma-type distributions have shown their adequacy in modeling real processes and phenomena. Over time, designs using distributions from the gamma family are becoming more complex in order to improve the applicability of mathematical models to relevant aspects of life. The paper presents a number of results both generalizing and simplifying some classical forms used in the analysis of large-scale and structural mixtures of generalized gamma laws. The gamma-exponential distribution is introduced and its characteristics are described. An explicit form for integral representations of partial probabilities of the generalized negative binomial distribution is given. The results are formulated in terms of the gamma exponential function. The obtained results can be widely used in models that use scale and structural mixtures of distributions with positive unrestricted support to describe processes and phenomena.
[+] References (13)
- Amoroso, L. 1925. Ricerche intorno alla curva dei redditi. Ann. Mat. Pur. Appl. Ser. 4 21:123-159.
- Stacy, E. W. 1962. A generalization of the gamma distri-bution. Ann. Math. Stat. 33:1187-1192.
- Kritsky, S. N., and M. F. Menkel. 1946. O priemakh issle- dovaniyasluchaynykhkolebaniyrechnogo stoka [Methods of investigation of random fluctuations of river flow]. Trudy NIU GUGMS Ser. IV [Proceedings of GUGMS research institutions, Ser. IV] 29:3-32.
- Kritsky, S.N., and M.F. Menkel. 1948. Vybor krivykh raspredeleniya veroyatnostey dlya raschetov rechnogo sto-ka [Selection of probability distribution curves for river flow calculations]. Izvestiya AN SSSR. Otd. tekhn. nauk [Herald of the Russian Academy of Sciences. Technical Sciences] 6:15-21.
- Zaks, L. M., and V. Yu. Korolev 2013. Obobshchennye dispersionnye gamma-raspredeleniya kak predel'nye dlya sluchaynykh summ [Generalized dispersion gamma dis-tributions as limiting for random sums]. Informatika i ee Primeneniya - Inform. Appl. 7(1):105-115.
- Korolev, V.Yu., and A.I. Zeifman. 2018. Generalized negative binomial distributions as mixed geometric laws and related limit theorems. Available at: https://arxiv.org/pdf/1703.07276.pdf (accessed September 22, 2019).
- Kudryavtsev, A. A. 2019. Apriornoe obobshchennoe gamma-raspredelenie v bayesovskikh modelyakh balansa [A priori generalized gamma distribution in Bayesian bal-ance models]. Informatika i ee Primeneniya - Inform. Appl. 13(3):20-26.
- Kudryavtsev, A. A. 2019. Bayesovskie modeli balansa [Bayesian balance models]. Informatika i ee Primeneniya - Inform. Appl. 12(3):18-27.
- Kudryavtsev, A.A., and A.I. Titova. 2017. Gamma- eksponentsial'naya funktsiya v bayesovskikh modelyakh massovogo obsluzhivaniya [Gamma-exponential function in Bayesian queuing models]. Informatika i ee Primeneniya - Inform. Appl. 11(4):104-108.
- Le Roy, E. 1900. Sur les series divergentes et les fonctions definiesparun developpement de Taylor. Ann. Faculte Sci. Toulouse 2 Ser. 2(3):317-384.
- Srivastava, H. M., and Z. Tomovski. 2009. Fractional calculus with an integral operator containing a generalized Mittag- Leffler function in the kernel. Appl. Math. Comput. 211:198-210.
- Gorenlo, R., A. A. Kilbas, F Mainardi, and S. V. Rogosin.
2014. Mittag-Leffler functions, related topics and applications. Berlin, Heidelberg: Springer-Verlag. 443 p.
- Kudryavtsev, A. A., S. I. Palionnaia, and V. S. Shorgin.
2019. Apriornoe obobshchennoe raspredelenie Freshe v bayesovskikh modelyakh balansa [A priori generalized Frechet distribution in Bayesian balance models]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 29(2):39-45.
[+] About this article
Title
ON THE REPRESENTATION OF GAMMA-EXPONENTIAL AND GENERALIZED NEGATIVE BINOMIAL DISTRIBUTIONS
Journal
Informatics and Applications
2019, Volume 13, Issue 4, pp 76-80
Cover Date
2019-12-30
DOI
10.14357/19922264190412
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
gamma exponential function; generalized gamma distribution; generalized negative binomial distribution; gamma-exponential distribution; mixed distributions
Authors
A. A. Kudryavtsev
Author Affiliations
Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, 1-52 Leninskiye Gory, GSP-1, Moscow 119991, Russian Federation
|