Informatics and Applications
2019, Volume 13, Issue 3, pp 27-33
A PRIORI GENERALIZED GAMMA DISTRIBUTION IN BAYESIAN BALANCE MODELS
Abstract
The work is devoted to the study of Bayesian balance models, involving the division of the system parameters into two classes: supporting system functioning positive factors and interfering with the functioning negative factors. The balance index, defined as the ratio of the negative factor to the positive factor, is considered.
The formulation of the problem, which consists in finding the main probabilistic characteristics (density, distribution function, and moments) of the balance index of factors having a priori generalized gamma distribution with the parameters of the form of one sign, is studied. The results are formulated in terms of the gamma-exponential function. A number of new properties of the latter are given. It is shown that the given statements are easily reformulated for large-scale mixtures of generalized gamma distributions with parameters of the form of different signs. The obtained results can be widely used in models, which describe the processes and phenomena using distributions with a positive unlimited support.
[+] References (25)
- Shorgin, S. Ya. 2005. O bayesovskikh modelyakh massovogo obsluzhivaniya [On Bayesian queuing models]. II Nauchnaya sessiya Instituta problem informatiki RAN: Tezisy dokladov [2nd Scientific Session of the Institute of Informatics Problems of the Russian Academy of Sciences: Abstracts]. Moscow: IPI RAN. 120-121.
- Kudryavtsev, A. A., I. A. Sokolov, and S. Ya. Shorgin. 2013. Bayesovskaya rekurrentnaya model' rosta nadezhnosti: ravnomernoe raspredelenie parametrov [Bayesian recurrent model of reliability growth: Uniform distribution of parameters]. Informatika i ee Primeneniya - Inform. Appl. 7(2):55-59.
- Kudryavtsev, A.A. 2018. Bayesovskie modeli balansa [Bayesianbalance models]. Informatika i ee Primeneniya - Inform. Appl. 12(3):18-27.
- Kudryavtsev, A.A., and A.I. Titova. 2017. Gamma- eksponentsial'naya funktsiya v bayesovskikh modelyakh massovogo obsluzhivaniya [Gamma-exponential function in Bayesian queuing models]. Informatika i ee Primeneniya - Inform. Appl. 11(4):104-108.
- Le Roy, E. 1900. Sur les series divergentes et les fonc- tions definies par un developpement de Taylor. Annales de la faculte des sciences de Toulouse 2e s^rie 2(3): 317-384.
- Srivastava, H. M., and Z. Tomovski. 2009. Fractional cal-culus with an integral operator containing a generalized Mittag- Leffler function in the kernel. Appl. Math. Comput. 211:198-210.
- Gorenlo, R., A. A. Kilbas, F. Mainardi, and S. V. Rogosin.
2014. Mittag-Leffler functions, related topics and applica-tions. Berlin - Heidelberg: Springer-Verlag. 443 p.
- Kudryavtsev, A. A., S. I. Palionnaia, and V. S. Shorgin. 2019. Apriornoe obobshchennoe raspredelenie Freshe v bayesovskikh modelyakh balansa [A priori generalized Frechet distribution in Bayesian balance models]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 29(2):39-45.
- Stacy, E. W. 1962. A generalization of the gamma distri-bution. Ann. Math. Stat. 33:1187-1192.
- Korolyuk, V. S., N.I. Portenko, A.V. Skorokhod, and A. F. Turbin. 1985. Spravochnik po teorii veroyatnostey
i matematicheskoy statistike [Handbook of probability theory and mathematical statistics]. Moscow: Nauka. 640 p.
- Lee, P.M. 2012. Bayesian statistics: An introduction. 4th ed. Chichester, U.K.: John Wiley & Sons. 462 p.
- Kleiber, C., and S. Kotz. 2003. Statistical size distributions in economics and actuarial sciences. New York, NY: John Wiley & Sons. 332 p.
- Kruglov, V. M. 2016. Sluchaynye protsessy. Ch. 1. Osnovy obshchey teorii [Stochastic processes. Part 1. Bases of gen-eral theory]. 2nd ed. Moscow: Yurayt. 276 p.
- Gelman, A., J. B. Carlin, H. S. Stern, D.B. Dunson, A. Vehtari, and D. B. Rubin. 2014. Bayesian data analysis. 3rd ed. CRC Press. 639 p.
- Nakagami, M. 1960. The m-distribution, a general formula of intensity of rapid fading. Statistical Methods in Radio Wave Propagation: Symposium Proceedings. Ed. W. C. Hoffman. New York, NY: Pergamon Press. 3-36.
- Wilson, E. B., and M. M. Hilferty. 1931. The distribution of chi-square. P. Natl. Acad. Sci. USA 17(12):684-688.
- Lai, C.-D. 2014. Generalized Weibull distributions. New York, NY: Springer. 128 p.
- Voda, V. G. 1989. New models in durability tool-testing: Pseudo-Weibull distribution. Kybernetika 25(3):209-215.
- Panwar, M. S., B. A. Sudhir, R. Bundel, and S. K. Tomer.
2015. Parameter estimation of inverse Rayleigh distribution under competing risk model for masked data. J. Inst. Sci. Technol. 20(2):122-127.
- Frechet, M. 1927. Sur la loi de probabilite de l'ecart maximum. Ann. Soc. Polonaise Math. 6:93-116.
- McDonald, J. B. 1984. Some generalized functions forthe size distribution of income. Econometrica 52(3):647-665.
- Burr, I.W 1942. Cumulative frequency functions. Ann. Math. Stat. 13(2):215-232.
- Singh, S. K., and G. S. Maddala. 1976. A function for size distribution of incomes. Econometrica 44(5):963-970.
- Dagum, C. 1977. A new model of personal income- distribution-specification and estimation. Econ. Appl. 30(3):413-437.
- Lomax, K. S. 1954. Business failures: Another example of the analysis of failure data. J.Am. Stat.Assoc. 49(268):847- 852.
[+] About this article
Title
A PRIORI GENERALIZED GAMMA DISTRIBUTION IN BAYESIAN BALANCE MODELS
Journal
Informatics and Applications
2019, Volume 13, Issue 3, pp 27-33
Cover Date
2019-09-30
DOI
10.14357/19922264190305
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
Bayesian approach; generalized gamma distribution; gamma-exponential function; balance models; mixed distributions
Authors
A. A. Kudryavtsev
Author Affiliations
Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, 1-52 Leninskiye Gory, GSP-1, Moscow 119991, Russian Federation
|