Informatics and Applications
2019, Volume 13, Issue 3, pp 20-26
NONTRANSITIVE TRIPLETS OF CONTINUOUS RANDOM VARIABLES AND THEIR APPLICATIONS
Abstract
The phenomenon of nontransitivity of the stochastic precedence relation for three independent random variables with distributions from some classes of continuous distributions is studied. Initially, this question was posed in connection with the application in strength theory. With paired comparisons of iron bars from three factories, a paradoxical situation may arise when the bars from the first factory are "worse" than the bars from the second factory, the bars from the second factory are "worse" than the bars from the third factory, and the bars from the third factory are "worse" than the bars from the first factory. Further, the nontransitivity topic gained popularity for the example of the so-called nontransitive dice; however, this led to its narrowing down to discrete random variables with finite sets of values. The paper presents that for mixtures of normal and exponential distributions, nontransitivity is possible in a wide range of parameters. Specific features of the mutual arrangement of the graphs of the distribution functions in these cases are indicated.
[+] References (27)
- Poddiakov, A. N. 2006. Neperekhodnost' (netranzi- tivnost') otnosheniy prevoskhodstva i prinyatie reshe- niy [Intransitive character of superiority relations and decision-making]. Psikhologia. Zh. VShE [Psychology J. HSE] 3(3):88-111.
- Permogorskiy, M. S., andA. N. Poddiakov. 2014. Otnoshe- nie prevoskhodstva mezhdu ob"ektami i netranzitivnost' ikh predpochteniy chelovekom [The relation of superiority between objects and the nontransitivity of their preferences by human]. Voprosy psikhologii [Psychology issues] 2:3-14.
- Poddiakov, A. November 21, 2017. Netranzitivnost' - kladez' dlya izobretateley [Nontransitivity is a treasure for inventors]. Troitskiy variant [Troitsk Variant] 242.
- Poddiakov, A. 2018. Intransitive machines. Available at: https://arxiv.org/abs/1809.03869 (accessed September 8, 2018).
- Arcones, M.A., P. H. Kvam, and F. J. Samaniego. 2002. Nonparametric estimation of a distribution subject to a stochastic precedence constraint. J. Am. Stat. Assoc. 97(457):170-182.
- Boland, P.J., H. Singh H., and B. Cukic. 2004. The stochastic precedence ordering with applications in sampling and testing. J. Appl. Probab. 41(1):73-82.
- Shakhnov, I. F. 2008. Aproblem of ranking interval objects in a multicriteria analysis of complex systems. J. Comput. Sys. Sc. Int. 47(1):33-39.
- Lepskiy, A. E. 2017. Stochastic and fuzzy ordering with the method of minimal transformations. Automat. Rem. Contr. 78(1):50-66.
- Steinhaus, H., and S. Trybula. 1959. On a paradox in applied probabilities. B. Acad. Pol. Sci. 7:67-69.
- Trybula, S. 1961. On the paradox of three random variables. Zastos. Matem. 5(4):321-332.
- Usyskin, Z. 1964. Max-min probabilities in the voting paradox. Ann. Math. Stat. 35(2):857-862.
- Trybula, S. 1965. On the paradox of n random variables. Zastos. Matem. 8(2):143-156.
- Bogdanov, 1.1.2010. Netranzitivnyeruletki [Nontransitive roulettes]. Mat. Pros. [Math. Enlight.] 14:240-255.
- Gardner, M. 1970. The paradox of the nontransitive dice and the elusive principle of indifference. Sci. Am. 223(6):110-114.
- Gardner, M. 1974. On the paradoxical situations that arise from nontransitive relations. Sci. Am. 231(6):120-125.
- Savage, R. 1994. The paradox of nontransitive dice. Am. Math. Mon. 101(5):429-436.
- Bozoki, S. 2014. Nontransitive dice sets releazing the Pa- ley tournament for solving Shutte's tournament problem. Miskolc Math. Notes 15(1):39-50.
- Conrey, B., J. Gabbard, K. Grant, A. Liu, and K. E. Morrison. 2016. Intransitive dice. Math. Mag. 89:133-143.
- Buhler, I., R. Graham, and A. Hales. 2018. Maximally nontransitive dice. Am. Math. Mon. 125(5):387-399.
- Weibull, W. 1939. A statistical theory of the strength of materials. Stockholm: Generalstabens litografiska anstalts forlag. 45 p.
- Levedev, A. V. 2019. Nontransitivity problem for three continuos random variables. Automat. Rem. Contr. 80(6): 1025-1036.
- Batrakova, D.A., V. Yu. Korolev, and S.Ya. Shorgin. 2007. Novyy metod veroyatnostno-statisticheskogo anali- za informatsyonnykh potokov v telekommunikatsionnykh setyakh [A new method for the probabilistic and statistical analysis of information flows in telecommunication networks]. Informatika i ee Primeneniya - Inform. Appl. 1(1):40-53.
- Krivenko, M. P. 2008. Rasshcheplenie smesi veroyatnost- nykh raspredeleniy na dve sostavlyayushchie [Splitting of distribution mixture in two components] Informatika i ee Primeneniya - Inform. Appl. 2(4):48-56.
- Bening, B. E., A. K. Gorshenin, and V. Yu. Korolev. 2011. Asimptoticheski optimal'nyy kriteriy proverki gipotez
0 chisle komponent smesi veroyatnostnykh raspredeleniy [An asymptotically optimal test for the number ofcompo- nents of a mixture of probability distributions]. Informatika
1 ee Primeneniya - Inform. Appl. 5(3):4-16.
- Gorshenin, A. K. 2012. Ob ustoychivosti sdvigovyhh sme- sey normal'nykh zakonov po otnosheniu k izmeneniyam smeshivayushchego raspredeleniya [On stability of normal location mixtures with respect to variations in mixing dis-tribution]. Informatika i ee Primeneniya - Inform. Appl. 6(2):22-28.
- Korolev, V. Yu., A. K. Gorshenin, S.K. Gulev, and K. P. Belyaev. 2015. Statisticheskoe modelirovanie tur- bulentnykh potokov tepla mezhdu okeanom i atmosfe- roy s pomoshch'yu metoda skol'zyashchego razdeleniya konechnykh normal'nykh smesey [Statistical modeling of air-sea turbulent heat fluxes by the method of moving separation of finite normal mixtures]. Informatika i ee Primeneniya - Inform. Appl. 9(4):3-13.
- Gorshenin, A. K. 2018. Zashumlenie dannykh konech- nymi smesyami normal'nykh i gamma-raspredeleniy s primeneniem k zadache okrugleniya nablyudeniy [Data noising by finite normal and gamma mixtures with applica-tion to the problem of rounded observations]. Informatika i ee Primeneniya - Inform. Appl. 12(3):28-34.
[+] About this article
Title
NONTRANSITIVE TRIPLETS OF CONTINUOUS RANDOM VARIABLES AND THEIR APPLICATIONS
Journal
Informatics and Applications
2019, Volume 13, Issue 3, pp 20-26
Cover Date
2019-09-30
DOI
10.14357/19922264190304
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
nontransitivity; nontransitive dice; stochastic precedence; continuous distributions; mixtures of distributions
Authors
A. V. Lebedev
Author Affiliations
Faculty of Mechanics and Mathematics, M. V. Lomonosov Moscow State University, Main Building, 1 Leninskiye Gory, Moscow 119991, Russian Federation
|