Informatics and Applications
2019, Volume 13, Issue 1, pp 99-107
RESOURCE QUEUING SYSTEMS WITH GENERAL SERVICE DISCIPLINE
- A. V. Gorbunova
- V. A. Naumov
- Yu. V. Gaidamaka
- K. E. Samouylov
Abstract
The article gives an overview of resource queuing systems with the concentration on the methods of their investigation. A valuable part of the article is devoted to the method, which leads to a significant simplification of the system analysis while maintaining high accuracy of the estimate, and in some cases without any loss of accuracy Simplification is to consider a system with random resource amount release at the instant of a customer departure instead of a system with the exact resource amount release equal to the occupied by the customer at the beginning of service. Subsequently, for the case of a Poisson flow of arrivals and exponential service time, the equivalence of the results for the initial and the simplified models was rigorously proved. In addition, a significant part of the paper is devoted to the overview of publications on the recurrent service discipline.
[+] References (34)
- Gorbunova, A. V., V. A. Naumov, Yu. V. Gaidamaka, and K. E. Samouylov. 2018. Resursnye sistemy massovogo ob- sluzhivaniya kak modeli besprovodnykh sistem svyazi [Re-source queuing systems as models of wireless communi-cation systems]. Informatika i ee Primeneniya - Inform. Appl. 12(3):48-55.
- Kelly, F P. 1991. Loss networks. Ann. Appl. Probab. 1:319-378.
- Ross, K. W. 1995. Multiservice loss models for broadband telecommunication networks. London: Springer-Verlag. 343 p.
- Basharin, G.P., K. E. Samouylov, N.V. Yarkina, and
I. A. Gudkova. 2009. A new stage in mathematical tele-traffic theory. Automat. Rem. Contr. 70(12): 1954-1964.
- Romm, E. L., andV. V. Skitovitch. 1971. Ob odnomobob- shchenii zadachi Ehrlanga [On a generalization of the Erlangproblem]. Automat. Rem. Contr. 6:164-168.
- Kats, B. A. 1976. Ob obsluzhivanii soobshcheniy sluchaynoy dliny [On serving messages of random length]. Teoriya massovogo obsluzhivaniya: Trudy 3-y Vsesoyuzn. shkoly-soveshchaniya po teorii massovogo obsluzhivaniya [3rd All-Union School-seminar on Queuing Theory Proceedings]. 157-168.
- Tikhonenko, O.M. 1985. Raspredelenie summarnogo ob"ema soobshcheniy v odnolineynoy sisteme massovogo obsluzhivaniya s gruppovym postupleniem [Distribution
of the total meddage flow in a single-line service system]. Automat. Rem. Contr. 11:78-83.
- Pechinkin, A.V., I. A. Sokolov, and S. Ya. Shorgin. 2012. Ogranichenie na summarnyy ob"em zayavok v diskretnoy sisteme Geo|G|1|infinity [A restriction on the total volume of demands in the discrete-time system Geo|G|1|infinity]. Informatika i ee Primeneniya - Inform. Appl. 6(3):107-113.
- Naumov, V. A., K. E. Samuilov, and A. K. Samuilov. 2016. On the total amount of resources occupied by serviced customers. Automat. Rem. Contr. 77(8):1419-1427.
- Lisovskaya, E., S. Moiseeva, and M. Pagano. 2017. Infinite-server tandem queue with renewal arrivals and random capacity of customers. Comm. Com. Inf. Sc. 700:201-216.
- Moiseev, A., S. Moiseeva, and E. Lisovskaya. 2017. Infinite-server queueing tandem with MMPP arrivals and random capacity of customers. 31st European Conference on Modelling and Simulation Proceedings. Budapest. 673- 679.
- Samouylov, K., E. Sopin, and O. Vikhrova. 2017. Analysis of queueing system with resources and signals. Comm. Com. Inf. Sc. 800:358-369.
- Sopin, E., O. Vikhrova, and K. Samouylov. 2017. LTE network model with signals and random resource re-quirement. 9th Congress (International) on Ultra Modern Telecommunications and Control Systems and Workshops. Munich, Germany: IEEE. 101-106.
- Naumov, V., and K. Samouylov. 2017. Analysis îf multi-resource loss system with state dependent arrival and service rates. Probab. Eng. Inform. Sc. 31(4):413-419.
- Naumov, V. A., and K. E. Samuilov. 2018. Analysis of net-works of the resource queuing systems. Automat. Rem. Contr. 79(5):822-829.
- Tikhonenko, O.M., and K. G. Klimovich. 2001. Ana- liz sistem obsluzhivaniya trebovaniy sluchaynoy dliny pri ogranichennom summarnom ob"eme [Analysis of queuing systems for random-length arrivals with limited cumulative volume]. Probl. Inform. Transm. 37(1):78-88.
- Poznyak, R.I., V.V. Revinskiy, A.M. Starovoytov, and
O. M. Tikhonenko. 1990. Opredelenie kharakteristiksum- marnogo ob"ema trebovaniy v odnolineynykh sistemakh obsluzhivaniya s ogranicheniyami [Calculation of charac-teristics of the total amount of customers in single-server queueing systems with constraints]. Automat. Rem. Contr. 11:182-186.
- Sengupta, B. 1984. The spatial requirement of an M|G|1 queue, or: How to design for buffer space. Modelling and performance evaluation methodology. Eds. F Baccelli and G. Fayolle. Lecture notes in control and information sciences book ser. Springer. 60:545-562.
- Tikhonenko, O. M. 2002. Analiz sistemy obsluzhivaniya neodnorodnykh trebovaniy s distsiplinoy razdeleniya pro- tsessora [Analysis of the queueing system with hetero-geneous customers and processor sharing discipline]. Izvestiya Natsional'noy akademii nauk Belarusi. Ser. fiziko- matematicheskikh nauk [Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Ser.] 2:105-111.
- Tikhonenko, O.M. 2010. Queuing system with processor sharing and limited resources. Automat. Rem. Contr. 71(5):803-815.
- Tikhonenko, O. M. 2005. Obobshchennaya zadacha Ehrlanga dlya sistem obsluzhivaniya s ogranichennym summarnym ob"emom [Generalized Erlang problem for queueing systems with bounded total size]. Probl. Inform. Transm. 41(3):64-75.
- Pechinkin, A.V. 1998. Sistema Mi|G|1|n s distsiplinoy LIFO i ogranicheniem na summarnyy ob"em trebovaniy [Mi|G|1|n system with LIFO discipline and constrained total amount of items]. Automat. Rem. Contr. 4:106-116.
- Pechinkin, A. V. 1999. Sistema MAP|G|1|n s distsipli- noy LIFO s preryvaniem i ogranicheniem na summarnyy ob"em trebovaniy [The MAP|G|1|n system with LIFO service discipline with interruptions and limitations on the total amount of requests]. Automat. Rem. Contr. 12:114120.
- Cascone, A., R. Manzo, A. V. Pechinkin, and
S. Ya. Shorgin. 2011. Geom|G|1|n system with LIFO dis-cipline without interrupts and constrained total amount of customers. Automat. Rem. Contr. 72(1):99-110.
- Kononov, I. A., and E. Yu. Lisovskaya. 2016. Issledovanie beskonechnolineynoy SMO MAP|GI|TO s zayavkami sluchaynogo ob"ema [Study of the infinite server queue
MAP|GI|to with customers of random volume]. 15th Conference (International) named after A. F. Terpugov "In-formation Technologies and Mathematical Modelling" Pro-ceedings. Tomsk: Tomsk State University. 67-71.
- Lisovskaya, E.Yu., and S. P. Moiseeva. 2017. Asimp- toticheskiy analiz nemarkovskoy beskonechnolineynoy sistemy obsluzhivaniya trebovaniy sluchaynogo ob"ema s vkhodyashchim rekurrentnym potokom [Asymptotical analysis of a non-Markovian queueing system with renewal input process and random capacity of customers]. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel'naya tekhnika i informatika [Tomsk State University J. Control Computer Science] 39:3038.
- Lisovskaya, E., S. Moiseeva, M. Pagano, andV. Potatueva. 2017. Study of the MMPP|GI|to queueing system with random customers' capacities. Informatika i ee Primeneniya - Inform. Appl. 11(4):111-119.
- Naumov, V. A., and K. E. Samouylov. 2016. O svyazi resursnykh sistem massovogo obsluzhivaniya s setyami Ehrlanga [On relationship between queuing systems with resources and Erlang networks]. Informatika i ee Primeneniya - Inform. Appl. 10(3):9-14.
- Naumov, V. A., andK. E. Samouylov. 2014. O modelirova- nii sistem massovogo obsluzhivaniya s mnozhestvennymi resursami [On the modeling of queueing systems with multiple resources]. Vestnik RUDN. Ser. Matematika, in-formatika, fizika [RUDN J. Mathematics Information Sciences Physics] 3:60-64.
- Naumov, V., K. Samouylov, E. Sopin, and S. Andreev 2014. Two approaches to analyzing dynamic cellular net-works with limited resources. 6th Congress (International) on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) Proceedings. St. Petersburg. 485-488.
- Samouylov, K., Yu. Gaidamaka, and E. Sopin. 2018. Sim-plified analysis of queueing systems with random require-ments. Statistics and simulation. Eds. J. Pilz, D. Rasch, V. B. Melas, andK. Moder. Springer proceedings in mathematics & statistics book ser. Springer. 231:381-390.
- Samouylov, K., E. Sopin, and O. Vikhrova. 2015. Ana-lyzing blocking probability in LTE wireless network via queuing system with finite amount of resources. Comm. Com. Inf. Sc. 564:393-403.
- Vikhrova, O. G., K. E. Samouylov, E. S. Sopin, and
S.Ya. Shorgin. 2015. K analizu pokazateley kachestva obsluzhivaniya v sovremennykh besprovodnykh setyakh [On performance analysis of modern wireless networks]. Informatika i ee Primeneniya - Inform. Appl. 9(4):48- 55.
- Sopin, E., and K. Samouylov 2018. On the analysis of the limited resources queuing system under MAP arrivals. Conference (International) on Applied Mathematics, Com-putational Science and Systems Engineering Proceedings. 16:01008. 4 p.
[+] About this article
Title
RESOURCE QUEUING SYSTEMS WITH GENERAL SERVICE DISCIPLINE
Journal
Informatics and Applications
2019, Volume 13, Issue 1, pp 99-107
Cover Date
2019-04-30
DOI
10.14357/19922264190114
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
resource queueing systems; continuous resource; discrete resource; limited resource; recurrent service; heterogeneous network; stationary distribution; semi-Markov process
Authors
A. V. Gorbunova , V. A. Naumov ,
Yu. V. Gaidamaka , ,
and K. E. Samouylov ,
Author Affiliations
Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Str., Moscow 117198, Russian Federation
Service Innovation Research Institute, 8A Annankatu, Helsinki 00120, Finland
Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|