Informatics and Applications
2019, Volume 13, Issue 1, pp 16-24
ON A CLASS OF FILTERING PROBLEMS ON MANIFOLDS
Abstract
The goal of the paper is to describe stochastic differential systems whose trajectories belong to a smooth manifold as an application to the optimal filtering problem. An additional condition is that not only system trajectories belong to the given manifold, but also the estimation results for these trajectories (solution of the optimal filtering problem with the minimum mean-squared error) belong to this manifold. Diffusion and jump- diffusion systems are considered. These systems can be driven by the Wiener process and the Poisson process. The main result is the conditions on coefficients of the equation for the estimated random process. These conditions are obtained on the basis of the first integral concept for the stochastic differential equation and some of its properties.
[+] References (15)
- Sinitsyn, I. N. 2016. Ortogonal'nye suboptimal'nye fil'try dlya nelineynykh stokhasticheskikh sistem na mnogoobraziyakh [Orthogonal suboptimal filters for nonlinear stochastic systems on manifolds]. Informatika i ee Prime-neniya - Inform. Appl. 10(1):34-44.
- Sinitsyn, I. N. 2016. Normal'nye i ortogonal'nye suboptimal'nye fil'try dlya nelineynykh stokhasticheskikh sistem
na mnogoobraziyakh [Normal and orthogonal conditionally optimal filters for nonlinear stochastic systems on manifolds]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 26(1):199-226.
- Sinitsyn, I. N., V. I. Sinitsyn, and E. R. Korepanov. 2016. Ellipsoidal'nye suboptimal'nye fil'try dlya nelineynykh stokhasticheskikh sistem na mnogoobraziyakh [Ellipsoidal conditionally optimal filters for nonlinear stochastic systems on manifolds]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 26(2):79-97.
- Sinitsyn, I. N., V. I. Sinitsyn, and E. R. Korepanov. 2017. Modifitsirovannye ellipsoidal'nye uslovno-optinal'nye fil'try dlya nelineynykh stokhasticheskikh sistem na mno- goobraziyakh [Modificated ellipsoidal conditionally optimal filters for nonlinear stochastic systems on manifolds]. Informatika i ee Primeneniya - Inform. Appl. 11(2):101-
111.
- Sinitsyn, I. N., V. I. Sinitsyn, I. V. Sergeev, and E. R. Korepanov. 2018. Methods of ellipsoidal filtration in nonlinear stochastic systems on manifolds. Autom. Rem. Contr. 79(1):117-127.
- Dubko, V.A. 1989. Voprosy teorii i primeneniya stokhasticheskikh differentsial'nykh uravneniy [Problems of theory and application of stochastic differential equations]. Vladivostok: Akad. Nauk SSSR. 185 p.
- Dubko, V. A. 2012. Stokhasticheskie differentsial'nye uravneniya. Izbrannye razdely [Stochastic differential equations. Selected topics]. Kiev: Logos. 68 p.
- Karachanskaya, E. V. 2014. Sluchaynye protsessy s invariantami [Random process with invariants]. Khabarovsk: Pacific National University. 148 p.
- Karachanskaya, E. V. 2015. Integralnye invarianty stokha-sticheskikh sistem i programmnoe upravlenie s veroyat-
nost'yu 1 [Integral invariants of stochastic systems and program control with probability 1]. Khabarovsk: Pacific National University. 148 p.
- Averina, T. A. 2017. Analiticheskie i chislennye resheniya trekh sistem stokhasticheskikh differentsial'nykh urav- neniy s invariantami [Analytic and numerical solutions of three systems of stochastic differential equations with invariants]. 12th Scientific and Technical Conference (Inter-national) "Analytical and Numerical Methods for Modeling Natural-Scientific and Social Problems" Proceedings. Pen-za. 3-8.
- 0ksendal, B., and A. Sulem. 2005. Applied stochastic control of jump diffusions. Berlin: Springer. 214 p.
- Sinitsyn, I. N. 2007. Fil'try Kalmana i Pugacheva [Kalman and Pugachev filters]. Moscow: Logos. 776 p.
- Bain, A., and D. Crisan. 2009. Fundamentals of stochastic filtering. New York, NY: Springer. 394 p.
- Rybakov, K. A. 2017. Statisticheskie metody analiza ifil'tratsii v nepreryvnykh stokhasticheskikh sistemakh [Sta-tistical methods of analysis and filtering for continuous stochastic systems]. Moscow: MAI. 176 p.
- Averina, T.A, E.V. Karachanskaya, and K. A. Rybakov. 2018. Statistical analysis of diffusion systems with invari-ants. Russ. J. Numer. Anal. M. 33(1):1-13.
[+] About this article
Title
ON A CLASS OF FILTERING PROBLEMS ON MANIFOLDS
Journal
Informatics and Applications
2019, Volume 13, Issue 1, pp 16-24
Cover Date
2019-04-30
DOI
10.14357/19922264190103
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
invariant; estimation; manifold; optimal filtering; random process; stochastic differential system
Authors
K. A. Rybakov
Author Affiliations
Moscow Aviation Institute (National Research University), 4 Volokolamskoye Shosse, Moscow 125993, Russian Federation
|