Informatics and Applications
2018, Volume 12, Issue 4, pp 86-91
ON NONUNIFORM ESTIMATES OF ACCURACY OF NORMAL APPROXIMATION FOR DISTRIBUTIONS OF SOME RANDOM SUMS UNDER RELAXED MOMENT CONDITIONS
- V. Yu. Korolev
- A.V. Dorofeeva
Abstract
Nonuniform estimates are presented for the rate of convergence in the central limit theorem for sums of a random number of independent identically distributed random variables. Two cases are studied in which the summation index (the number of summands in the sum) has the binomial or Poisson distribution. The index is assumed to be independent of the summands. The situation is considered where the information that only the second moments of the summands exist is available. Particular numerical values of the absolute constants are presented explicitly. Also, the sharpening of the absolute constant in the nonuniform estimate of the rate of convergence in the central limit theorem for sums of a nonrandom number of independent identically distributed random variables is announced for the case where the summands possess only second moments.
[+] References (24)
- Katz, M. 1963. Note on the Berry-Esseen theorem. Ann. Math. Stat. 39(4):1348-1349.
- Petrov, V.V. 1965. Odna otsenka otkloneniya raspredeleniya summy nezavisimykh sluchaynykh velichin ot normal'nogo zakona [One estimate of the deviation of distribution of the sum of independent random variables from the normal law]. Sov. Math. 160(5):1013-1015.
- Osipov, L.V 1966. Refinement of Lindeberg's theorem. Theor. Probab. Appl. 11(2):299-302.
- Feller, W. 1968. On the Berry-Esseen theorem. Z. Wahrscheinlichkeit. 10:261-268.
- Paditz, L. 1980. Bemerkungen zu einer Fehlerabschatzung im zentralen Grenzwertsatz. Wiss. Z. Hochsch. Verkehrswesen Friedrich List Dres. 27(4):829-837.
- Paditz, L. 1984. On error-estimates in the central limit theorem for generalized linear discounting. Math. Opera- tionsforsch. Stat. Ser. Stat. 15(4):601-610.
- Barbour, A. D., and P. Hall. 1984. Stein's method and the Berry-Esseen theorem. Aust. J. Stat. 26:8-15.
- Paditz, L. 1986. Uber eine Fehlerabschatzung im zentralen Grenzwertsatz. Wiss. Z. Hochsch. Verkehrswesen Friedrich List Dres. 33(2):399-404.
- Chen, L. H.Y., and Q. M. Shao. 2001. A non-uniform Berry-Esseen bound via Stein's method. Probab. Theory Rel. 120:236-254.
- Korolev, V. Yu., and S.V. Popov. 2012. An improvement of convergence rate estimates in the central limit theorem under absence of moments higher than the second. Theor. Probab. Appl. 56(4):682-691.
- Korolev, V. Yu., and S.V. Popov. 2012. Improvement of convergence rate estimates in the central limit theorem under weakened moment conditions. Dokl. Math. 86(1):506-511.
- Popov, S.V. 2012. Utochneniye ocnok skorosti skhodimosti v tsentral'noy predel'noy teoreme pri oslablennykh momentnykh usloviyakh [Improvement of convergence rate estimates in the central limit theorem under weakened moment conditions]. Moscow: MSU. PhD Diss.
- Korolev, V., and A. Dorofeeva. 2017. Bounds of the accuracy of the normal approximation to the distributions of random sums under relaxed moment conditions. Lith. Math.J. 57(1):38-58.
- Petrov, V. V. 1972. Summy nezavisimykh sluchaynykh velichin [Sums of independent random variables]. Moscow: Nauka. 416 p.
- Petrov, V. V. 1987. Predel'nye teoremy dlya summ nezavisimykh sluchaynykh velichin [Limit theorems for sums of independent random variables]. Moscow: Nauka. 320 p.
- Schevtsova, I. G. 2018. A moment inequality with application to convergence rate estimates in the global CLT for Poisson-binomial random sums. Theor. Probab. Appl. 62(2):278-294.
- Petrov, V. V. 1979. Odna predel'naya teorema dlya summ nezavisimykh neodinakovo raspredelennykh sluchaynykh
velichin [One limit theorem for sums of independent unequally distributed random variables]. J. Mathematical Sciences 85:188-192.
- Thongtha, P., and K. Neammanee. 2007. Refinement of the constants in the non-uniform version of the Berry- Esseen theorem. ThaiJ. Math. 5:1-13.
- Neammanee, K., and P. Thongtha. 2007. Improvement of the non-uniform version of the Berry-Esseen inequality via Paditz-Shiganov theorems. J. Inequalities Pure Appl. Math. 8(4): 92.
- Shevtsova, I. G. 2014. On the absolute constants in the Berry-Esseen-type inequalities. Dokl. Math. 89(3):378- 381.
- Nefedova, Yu. S., and I. G. Shevtsova. 2013. On nonuniform convergence rate estimates in the central limit theorem. Theor. Probab. Appl. 57(1):28-59.
- Korolev, V. Yu., and I. G. Shevtsova. 2012. An improvement of the Berry-Esseen inequality with applications to Poisson and mixed Poisson random sums. Scand. Actuar. J. 2:81-105.
- Shevtsova, I. G. 2014. On the accuracy of the normal approximation to compound Poisson distributions. Theor. Probab. Appl. 58(1):138-158.
- Barbour, A. D., and P. Hall. 1984. On the rate of Poisson convergence. Math. Proc. Cambridge 95:473-480.
[+] About this article
Title
ON NONUNIFORM ESTIMATES OF ACCURACY OF NORMAL APPROXIMATION FOR DISTRIBUTIONS OF SOME RANDOM SUMS UNDER RELAXED MOMENT CONDITIONS
Journal
Informatics and Applications
2018, Volume 12, Issue 4, pp 86-91
Cover Date
2018-12-30
DOI
10.14357/19922264180412
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
central limit theorem; normal approximation; random sum; binomial distribution; Poisson distribution; Poisson theorem
Authors
V. Yu. Korolev , , and A.V. Dorofeeva
Author Affiliations
Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
Hangzhou Dianzi University, Xiasha Higher Education Zone, Hangzhou 310018, China
|