Informatics and Applications
2018, Volume 12, Issue 4, pp 16-24
DETERMINING THE EXTREMES OF PRECIPITATION VOLUMES BASED ON THE MODIFIED "PEAKS OVER THRESHOLD" METHOD
- A. K. Gorshenin
- V. Yu. Korolev
Abstract
The problem of correct determination of extreme observations is very important when studying
meteorological phenomena. The paper proposes ascending and descending methods for finding the threshold for
extremes based on the Renyi theorem for thinning flows and the Pikands - Balkema - De Haan results. Using the
observation data for 60 years for Potsdam and Elista, it is demonstrated that the ascending method can present
excellent results for daily precipitation but for volumes of wet periods, the descending method should be used. The
results of such nonparametric approaches are compared with the parametric criterion proposed in the previous
papers by the authors.
[+] References (19)
- Groisman, P. Y., T R. Karl, D. R. Easterling, et al. 1999.
Changes in the probability of heavy precipitation: Important indicators of climatic change. J. Climate 42:243-285.
- Zolina, O., C. Simmer, A. Kapala, S. Bachner, S. Gulev,
and H. Maechel. 2008. Seasonally dependent changes
of precipitation extremes over Germany since 1950 from
a very dense observational network. J. Geophys. Res. 113: D06110.
- Leadbetter, M. R. 1991. On a basis for " Peaks over Threshold" modeling. Stat. Probabil. Lett. 12(4):357-362.
- Mendez, F. J., M. Menendez, A. Luceno, and I. J. Losa- da. 2006. Estimation of the long-term variability of extreme significant wave height using a time-dependent Peak over Threshold (PoT) model. J. Geophys. Res. Oceans 111(C7):C07024.
- Kysely, J., J. Picek, and R. Beranova. 2010. Estimating extremes in climate change simulations using the peaks- over-threshold method with a non-stationary threshold. Global Planet. Change 72(1-2):55-68.
- Begueria, S., and S. M. Vicente-Serrano. 2006. Mapping the hazard of extreme rainfall by peaks over threshold extreme value analysis and spatial regression techniques. J. Appl. Meteorol. Clim. 45(1):108-124.
- Begueria, S., M. Angulo-Martinez, S.M. Vicente- Serrano, I. J. Lopez-Moreno, and A. El-Kenawy. 2011. Assessing trends in extreme precipitation events intensity and magnitude using non-stationary peaks-over-threshold analysis: A case study in northeast Spain from 1930 to 2006. Int. J. Climatol. 31(142):2102-2114.
- Roth, M., T. A. Buishand, G. Jongbloed, A. M. G. Tank, and J. H. van Zanten. 2012. A regional peaks-over- threshold model in a nonstationary climate. Water Resour Res. 48:W11533.
- Gorshenin, A. K., and V. Yu. Korolev. 2016. A methodology for the identification of extremal loading in data flows in information systems. Comm. Com. Inf. Sc. 638:94-103.
- Korolev, V. Yu., A. K. Gorshenin, and K. P. Belyaev.
2018. Statistical tests for extreme precipitation volumes. 1802.02928 [stat.ME]. Available at: https://arxiv.org/ abs/1802.02928v3 (accessed December 3, 2018).
- Gnedenko, B. V., and V. Yu. Korolev. 1996. Random sum-mation: Limit theorems and applications. Boca Raton, FL: CRC Press. 288 p.
- Balkema, A., and L. de Haan. 1974. Residual life time at great age. Ann. Probab. 2(5):792-804.
- Pickands, J. 1975. Statistical inference using extreme order statistics. Ann. Stat. 3(1):119-131.
- Gorshenin, A. K. 2017. O nekotorykh matematicheskikh i programmnykh metodakh postroeniya strukturnykh modeley informatsionnykh potokov [On some mathematical and programming methods for construction of structural models of information flows]. Informatika i ee Primeneniya - Inform. Appl. 11(1):58-68.
- Gorshenin, A. K. 2017. Analiz veroyatnostno- statisticheskikh kharakteristik osadkov na osnove patter- nov [Pattern-based analysis of probabilistic and statistical characteristics of precipitations]. Informatika i ee Prime-neniya - Inform. Appl. 11(4):38-46.
- Korolev, V. Yu., A. K. Gorshenin, S. K. Gulev, K. P. Belyaev, and A. A. Grusho. 2017. Statistical analysis of precipitation events. AIP Conf. Proc. 1863:090011-1- 090011-4.
- Korolev, V. Yu., and A. K. Gorshenin. 2017. The probabil-ity distribution of extreme precipitation. Dokl. Earth Sci. 477(2):1461-1466.
- Gorshenin, A. K., and V. Yu. Kuzmin. 2018. Neural net-work forecasting of precipitation volumes using patterns. Pattern Recogn. Image Anal. 28(3):450-461.
- Gorshenin, A. K., andV. Yu. Korolev. 2018. Scale mixtures of Frechet distributions as asymptotic approximations of extreme precipitation. J. Math. Sci. 234(6):886-903.
[+] About this article
Title
DETERMINING THE EXTREMES OF PRECIPITATION VOLUMES BASED ON THE MODIFIED "PEAKS OVER THRESHOLD" METHOD
Journal
Informatics and Applications
2018, Volume 12, Issue 4, pp 16-24
Cover Date
2018-12-30
DOI
10.14357/19922264180403
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
precipitation; wet periods; extreme values; thresholds; Renyi theorem; Pickands - Balkema - de Haan theorem; testing statistical hypotheses; data analysis
Authors
A. K. Gorshenin , and V. Yu. Korolev ,
Author Affiliations
Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, GSP-1, Russian Federation
|