Informatics and Applications
2018, Volume 12, Issue 3, pp 48-55
RESOURCE QUEUING SYSTEMS AS MODELS OF WIRELESS COMMUNICATION SYSTEMS
- A. V. Gorbunova
- V. A. Naumov
- Yu. V. Gaidamaka
- K. E. Samouylov
Abstract
The article presents an overview of the resource queuing systems used for modeling of a wide class of real systems with admittedly limited resources. Despite the objective importance of studying of such systems, there have been very few works devoted to their analysis until recently, which was due to the complexity of constructing a random process to describe their functioning and, accordingly, of obtaining the numerical results. However, in recent years, there has been a significant shift in the study of the resource systems - new methods for their analysis have been proposed, which made it possible to construct recursive algorithms suitable for the numerical calculations.
In this regard, the current review reflects only a part of the previously obtained results, namely, it considers the resource systems without waiting space with exponentially distributed service time. The authors consider the models of wireless communication systems based on resource queuing systems, expressions for estimating the main probabilistic, and temporal characteristics and algorithms for their calculation.
[+] References (28)
- Andrews, J. G., S. Buzzi, W Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang. 2014. What will 5G be? IEEE J. Sel. Area. Comm. 32(6):1065-1082.
- Buturlin, I. A., Y.V. Gaidamaka, and A. K. Samuylov. 2012. Utility function maximization problems for two cross-layer optimization algorithms in OFDM wireless networks. 4th Congress (International) on Ultra Modern Telecommunications and Control Systems. 63-65.
- Galinina, O. S., D. Andreev, M. Gerasimenko, Y. Koucheryavy, N. Himayat, S. P. Yeh, and S. Talwar. 2014. Capturing spatial randomness of heterogeneous cellular/WLAN deployments with dynamic traffic. IEEE J. Sel. Area. Comm. 32(6): 1083-1099.
- Naumov, V. A., K. E. Samuilov, and A. K. Samuilov. 2016. On the total amount of resources occupied by serviced customers. Automat. Rem. Contr. 77(8):1419-1427.
- Gimpelson, L. A. 1968. Analysis of mixtures of wide- and narrow-bandtraffic. IEEET. Commun. Techn. 13(3):258- 266.
- Kelly, F P. 1991. Loss networks. Ann. Appl. Probab. 1:319- 378.
- Ross, K. W. 1995. Multiservice loss models for broadband telecommunication networks. London: Springer-Verlag. 343 p.
- Basharin, G. P., K. E. Samouylov, N. V. Yarkina, and
I. A. Gudkova. 2009. A new stage in mathematical tele-traffic theory. Automat. Rem. Contr. 70(12):1954-1964.
- Romm, E. L., andV. V. Skitovich. 1971. Ob odnomobob- shchenii zadachi Erlanga [On a generalization of the Erlangproblem]. Automat. Rem. Contr. 6:164-168.
- Kats, B.A. 1976. Ob obsluzhivanii soobshcheniy sluchaynoy dliny [On serving messages of random length]. Teoriya massovogo obsluzhivaniya. Tr. 3 Vsesoyuzn. shkoly- soveshchaniyapo teorii massovogo obsluzhivaniya [Queuing Theory: 3rd All-Union School-Seminar on Queuing Theory Proceedings]. 157-168.
- Naumov, V. A., and A. K. Samuylov. 2015. Model' vydeleniya resursov besprovodnoy seti ob"emami sluchaynoy velichiny [Queuing system with resource allocation of the random volume]. RUDN J. Math. Information Sci. Phys. 2:38-45.
- Naumov, V., K. Samouylov, N. Yarkina, E. Sopin, S. Andreev, and A. Samuylov. 2015. LTE performance analysis
using queuing systems with finite resources and random requirements. 7th Congress on Ultra Modern Telecommuni-cations and Control Systems. IEEE. 100-103.
- Naumov, V., and K. Samouylov. 2017. Analysis îf multi-resource loss system with state dependent arrival and service rates. Probab. Eng. Inform. Sc. 31(4):413-419.
- Samouylov, K., E. Sopin, and O. Vikhrova. 2017. Analysis of queueing system with resources and signals. Comm. Com. Inf. Sc. 800:358-369.
- Sopin, E., O. Vikhrova, and K. Samouylov. 2017. LTE network model with signals and random resource re-quirement. 9th Congress (International) on Ultra Modern Telecommunications and Control Systems and Workshops. 101-106.
- Petrov, V., D. Solomitckii, A. Samuylov, A. Maria Lema, M. Gapeyenko, D. Moltchanov, S. Andreev, V. Naumov, K. Samouylov, M. Dohler, and Ye. Koucheryavy. 2017. Dynamic multi-connectivity performance in ultra-dense urban mmWave deployments. IEEE J. Sel. Area. Comm. 35(9):2038-2055.
- Naumov, V. A., and K. E. Samuilov. 2018. Analysis of net-works of the resource queuing systems. Automat. Rem. Contr. 79(5):822-829.
- Samouylov, K., E. Sopin, and O. Vikhrova. 2015. Ana-lyzing blocking probability in LTE wireless network via queuing system with finite amount of resources. Comm. Com. Inf. Sc. 564:393-403.
- Vikhrova, O. G., K. E. Samouylov, E. S. Sopin, and
S.Ya. Shorgin. 2015. K analizu pokazateley kachestva obsluzhivaniya v sovremennykh besprovodnykh setyakh [On performance analysis of modern wireless networks]. Informatika i ee Primeneniya - Inform. Appl. 9(4):48-55.
- Sopin, E., K. Samouylov, O. Vikhrova, R. Kovalchukov,
D. Moltchanov, and A. Samuylov. 2016. Evaluating a case of downlink uplink decoupling using queuing system with random requirement. Internet of Things, smart spaces, and next generation networks and systems. Eds. O. Galinina,
S. I. Balandin, and Y. Koucheryavy. Lecture notes in computer science ser. Springer. 9870:440-450.
- Samouylov, K., E. Sopin, O. Vikhrova, and S. Shorgin.
2017. Convolution algorithm for normalization constant evaluation in queuing system with random requirements. AIPConf. Proc. 1863:090004. 4 p.
- Vikhrova, O.G. 2017. K vychisleniyu veroyatnostnykh kharakteristik SMO ogranichennoyemkostiso sluchaynymi trebovaniyami k resursam [About probability character-istics evaluation in queuing system with limited resources and random requirements]. RUDN J. Math. Information Sci. Phys. 25(3):203-210.
- Sopin, E., and K. Samouylov. 2018. On the analysis of the limited resources queuing system under MAP arrivals. Conference (International) on Applied Mathematics, Com-putational Science and Systems Engineering. 16:01008. 4 p.
- Sopin, E., Yu. Gaidamaka, E. Markova, and O. Vikhrova. 2018 (in press). Performance analysis of M2M traffic in LTE network using queuing systems with random resource requirements. Autom. Control Comp. S.
- Naumov, V. A., andK. E. Samuylov. 2014. Omodelirovanii sistem massovogo obsluzhivaniya s mnozhestvennymi resursami [On the modeling of queueing systems with multiple resources]. [RUDN J. Math. Information Sci. Phys. 3:60-64.
- Buzen, J. P. 1973. Computational algorithms for closed queueing networks with exponential servers. Commun. ACM 16:527-531.
- Vishnevsky, V. M., K. E. Samouylov, V. A. Naumov, and N.V. Yarkina. 2016. Model' soty LTE s mezhmashin- nym trafikom v vide mul'tiservisnoy sistemy massovogo obsluzhivaniya s elastichnymi i potokovymi zayavka- mi i markovskim vkhodyashchim potokom [Multiservice queuing system with elastic and streaming flows and markovian arrival process for modelling LTE cell with M2M traffic]. RUDN J. Math. Information Sci. Phys. 4:26-36.
- Vishnevsky, V., K. Samouylov, V. Naumov, A. Krish- namoorty, and N. Yarkina. 2017. Multiservice queieing system with map arrivals for modelling LTE cell with H2H and M2M communications and M2M aggregation. Comm. Com. Inf. Sc. 700:63-74.
[+] About this article
Title
RESOURCE QUEUING SYSTEMS AS MODELS OF WIRELESS COMMUNICATION SYSTEMS
Journal
Informatics and Applications
2018, Volume 12, Issue 3, pp 48-55
Cover Date
2018-08-30
DOI
10.14357/19922264180307
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
resource queueing systems; continuous resource; discrete resource; limited resource; recursive algorithm; heterogeneous network; stationary distribution; semi-Markov process; wireless communication systems
Authors
A. V. Gorbunova , V. A. Naumov ,
Yu. V. Gaidamaka , , and K. E. Samouylov ,
Author Affiliations
Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., Moscow 117198, Russian Federation
Service Innovation Research Institute (PIKE), 8A Annankatu, Helsinki 00120, Finland
Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|