Informatics and Applications
2018, Volume 12, Issue 3, pp 18-27
BAYESIAN BALANCE MODELS
Abstract
A number of previous author's works were devoted to the Bayesian approach to queuing and reliability In this paper, the method application is extended to a wide range of problems, such as demography, physics, political science, modeling of emergencies, medicine, etc. The method is based on separation of system factors into two groups: those that support functioning of the system (positive, or p-factors) and those that inhibit system's functioning (negative, or n-factors). In the paper, system's balance index, which equals to the ratio of n- and p-factors, and the advantage index, which equals to the ratio of p-factor to the sum of n- and p-factors, are considered. It is assumed that the factors, which affect the system, change over time, and besides their exact values are impossible to determine due to the measuring equipment's imperfections, excessively high expenses on thorough research, lack of time and resources, and so on. Such prerequisites lead to usage of the Bayesian method in application to the problems described. The method implies randomization of the initial parameters (factors) and, as a consequence, randomization of the balance and advantage indices. The main goal of the research is to study probabilistic characteristics of the balance and advantage indices assuming that the apriori distributions of the system's factors are known. In the case of independently distributed n- and p-factors, which are random variables, the problem is reduced to studying properties of the distributions' mixtures. As opposed to popular normal mixtures, in Bayesian balance models, the distribution being mixed has a positive support. Special attention is paid to apriori gamma-type distributions, since these distributions are adequate asymptotic approximations of a wide range of probability distributions. The mixtures of exponential, Erlang, and Weibull apriori distributions were considered earlier. In this paper, special attention is paid to the case of Nakagami m-distribution of n- and p-factors (with its particular cases of Rayleigh, Maxwell-Boltzmann, chi-, and other distributions). The explicit formulas for density, distribution functions, and moments of the balance index for different combinations of distributions are obtained.
The results provided in this paper can be applied to many different tasks conserning indices, ratings, and indicators.
[+] References (42)
- Yurasova, M. V. 2017. Reyting kak instrument izmereniya uspekha: "za" i "protiv" [Rating as a tool for measuring success: "Pro" and "contra"]. Moscow State University Bull. Ser. 18. Sociology PoliticalSci. 23(2):137-164.
- Shikin, E.V., and A. G. Chkhartishvili. 2004. Matematicheskie metody i modeli v upravlenii [Mathematical methods and models in management]. 3rd ed. Moscow: Delo. 440 p.
- Shaptala, V. G., V. Yu. Radoutskiy, and V.V. Shaptala.
2010. Osnovy modelirovaniya chrezvychaynykh situatsiy [Basics of modeling of emergency situations]. Belgorod: BGTU. 166 p.
- Bolodurina, I. P., and Yu. P. Lugovskova. 2009. Optimal'noe upravlenie dinamikoy vzaimodeystviya immunnoy sistemy cheloveka s infektsionnymi zabolevaniyami [Optimum control of dynamics of interaction of the human immune system with infectious diseases]. Vestnik SamGU 74(8):138-153.
- Peskova, D. R. 2006. Tenevoy sektor: ingibitor ili katalizator ekonomicheskogo razvitiya? [The informal sector: An inhibitor or catalyst for economic development?]. Vestnik Bashkirskogo universiteta [Bull. Bashkir University. Section of the economy] 11(3):141-143.
- Mezhdunarodnyy diskussionnyy klub "Valday" [International Discussion Club "Valdai"]. 2017. Mir budushchego: cherez stolknovenie k garmonii. Itogovaya plenarnaya ses- siya XIV ezhegodnogo zasedaniya [The world of the future: Through a clash to harmony: The Final Plenary Session of the 14th Annual Meeting]. Sochi. Available at: http://kremlin.ru/events/president/news/55882 (accessed February 13, 2018).
- Borisov, V. A. 2001. Demografiya [Demography]. Moscow: NOTABENE. 272 p.
- Volgin, N. A., L. L. Rybakovskiy, N. M. Kalmykova, et al. 2005. Demografiya [Demography]. Eds. N. A. Volgin and L. L. Rybakovskiy. Moscow: Logos. 280 p.
- Kuznetsov, S. I., and K. I. Rogozin. 2012. Spravochnikpo fizike [Handbook of physics]. Tomsk: TPU. 224 p.
- Bocharov, P.P., and A.V. Pechinkin. 1995. Teoriya massovogo obsluzhivaniya [Queueing theory]. Moscow: RUDN. 529 p.
- Zdorovtsov, I.A., and V. Yu. Korolev. 2004. Osnovy teorii nadezhnosti volokonno-opticheskikh liniy peredachi zheleznodorozhnogo transporta [Fundamentals of reliability theory of fiber optic transmission lines for railway transport]. Moscow: MAKS Press. 308 p.
- Kozlov, B.A., and I. A. Ushakov. 1970. Reliability hand-book. New York, NY: Holt, Rinehart & Winston. 391 p.
- GOST 27.002-89. 1989. Nadezhnost' v tekhnike. Osnovnye ponyatiya. Terminy i opredeleniya [Industrial product de-pendability. General concepts. Terms and definitions]. Moscow. 24 p.
- Korolev, V. Yu., and I. A. Sokolov. 2006. Osnovy matematicheskoy teorii nadezhnosti modifitsiruemykh sistem [Fundamentals of mathematical theory of modified systems reliability]. Moscow: IPI RAN. 102 p.
- Ivchenko, G. I., V. A. Kashtanov, and I. N. Kovalenko. 1982. Teoriya massovogo obsluzhivaniya [Queueing theory]. Moscow: Higher school. 256 p.
- Korolev, V. Yu., A. V. Chertok, A. Yu. Korchagin, and A. I. Zeifman. 2015. Modeling high-frequency order flow imbalance by functional limit theorems for two-sided risk processes. Appl. Math. Comput. 253:224-241.
- GOST R ISO 5725-1-2002. 2009. Tochnost' (pravil'nost'
i pretsizionnost') metodov i rezul'tatov izmereniy. Chast' 1. Osnovnye polozheniya i opredeleniya [Accuracy (trueness and precision) of measurement methods and results. Part 1. General principles and definitions]. Moscow: Stan- dardinform Publs. 24 p.
- Congdon, P. 2006. Bayesian statistical modelling. 2nd ed. Chichester, U.K.: John Wiley & Sons. 596 p.
- Hamada, M. S., A. Wilson, C. S. Reese, and H. Martz.
2008. Bayesian reliability. New York, NY: Springer. 436 p.
- Carlin, B. P., and T A. Louis. 2008. Bayesian methods for data analysis. 3rd ed. New York, NY: Chapman & Hall. 552 p.
- Albert, J. 2009. Bayesian computation with R. New York, NY: Springer. 300 p.
- Laplace, P.-S. 1902. A philosophical essay on probabilities. Transl. from the French by F. W Truscott and F L. Emory. New York, NY: John Wiley & Sons. 223 p.
- Bayes, T, and R. Price. 1763. An essay towards solving a problem in the doctrine of chances. Phil. Trans. 53:370-418.
2
- Shorgin, S. Ya. 2005. Obayesovskikh modelyakh massovogo obsluzhivaniya [On Bayesian queuing models].
II Nauchnaya Sessiya instituta problem informatiki RAN: Tezisy dokladov [2nd Scientific Session of the Institute of Informatics Problems of the Russian Academy of Sciences: Abstracts]. Moscow: IPI RAN. 120-121.
- Bening, V. E., V. Yu. Korolev, I. A. Sokolov, and
S. Ya. Shorgin. 2007. Randomizatsionnye modeli i metody teorii nadezhnosti informatsionnykh i tekhnicheskikh sistem [Randomization models and methods of reliability theory for information and technical systems]. Moscow: TORUS PRESS. 256 p.
- Kudryavtsev, A. A., and S. Ya. Shorgin. 2015. Bayesovskie modeli v teorii massovogo obsluzhivaniya i nadezhnosti [Bayesian models in mass service and reliability theories]. Moscow: FIC IU RAN. 76 p.
- Orlik, S. 2004-2005. Vvedenie v programmnuyu inzheneriyu i upravlenie zhiznennym tsiklom PO. Programmnaya inzheneriya. Soprovozhdenie programmnogo obespecheniya [Introduction to software engineering and software lifecycle management. Software engineering. Maintenance of software]. Available at: http://www. software-testing.ru/files/se/3-5-software_engineering_ maintenance.pdf (accessed February 13, 2018).
- Boni, M. F. 2008. Vaccination and antigenic drift in in-fluenza. Vaccine 26(Suppl. 3):8-14.
- Kim, J. H., I. Skountzou, R. Compans, and J. Jacob.
2009. Original antigenic sin responses to influenza viruses. J. Immunology 183(5):3294-3301.
- Amantonio. 09.11.2017. Razbiraemsya s privivkami. Chast' 20. Gripp (1) [We deal with vaccinations. Part 20. Influenza (1)]. Livejournal. Available at: https:// amantonio.livejournal.com/29621.html (accessed February 13, 2018). 10.11.2017. Prodolzhenie: Chast' 21. Gripp (2) [Continuation: Part 21. Influenza (2)]. Livejournal. Available at: https://amantonio.livejournal. com/29886.html (accessed February 13, 2018).
- Korolev, V. Yu. 2011. Veroyatnostno-statisticheskie metody dekompozitsii volatil'nosti khaoticheskikh protsessov [Prob-abilistic and statistical methods of decomposition of volatility of chaotic processes]. Moscow: MSU Publs. 510 p.
- Kudryavtsev, A. A., V. S. Shorgin, and S. Ya. Shorgin. 2009. Bayesovskie modeli massovogo obsluzhivaniya i nadezhnosti: obshchiy erlangovskiy sluchay [Bayesian queueing and reliability models: General Erlang case]. Informatika
i ee Primeneniya - Inform. Appl. 3(4):30-34.
- Zhavoronkova, Iu. V., A. A. Kudryavtsev, and S. Ya. Shor-gin. 2014. Bayesovskaya rekurrentnaya model' rosta nadezhnosti: beta-raspredelenie parametrov [Bayesian re-current model of reliability growth: Beta-distribution of parameters]. Informatika i ee Primeneniya - Inform. Appl. 8(2):48-54.
- Kudryavtsev, A. A., and A. I. Titova. 2016. Bayesovskie modeli massovogo obsluzhivaniya i nadezhnosti: vyrozhdenno-veybullovskiy sluchay [Bayesian queuing and reliability models: Degenerate-Weibull case]. Infor- matika i ee Primeneniya - Inform. Appl. 10(4):68-71.
- Kudryavtsev, A.A., and A.I. Titova. 2017. Gamma- eksponentsial'naya funktsiya v bayesovskikh modelyakh massovogo obsluzhivaniya [Gamma-exponential function in Bayesian queuing models]. Informatika i ee Primeneniya - Inform. Appl. 11(4):104-108.
- Nakagami, M. 1960. The m-distribution, a general formula of intensity of rapid fading. Statistical Methods in Radio Wave Propagation Symposium Proceedings. Ed. W. C. Hoff-man. New York, NY: Pergamon Press. 3-36.
- Kruglov, V. M. 2016. Sluchaynye protsessy. Ch. 1. Osnovy obshchey teorii [Stochastic processes. Part 1. Bases of gen-eral theory]. 2nd ed. Moscow: Yurayt. 276 p.
- Siddiqui, M. M. 1964. Statistical inference for Rayleigh distributions. J. Res. NBSDRad. Sci. 68D(9):1005-1010.
- Mandl, F. 1988. Statistical physics. 2nd ed. Chichester, U.K.: John Wiley & Sons. 385 p.
- Zaks, L. M., and V. Yu. Korolev. 2013. Obobshchennye dispersionnye gamma-raspredeleniya kak predel'nye dlya sluchaynykh sum [Generalized dispersion gamma distri-butions as limiting for random sums]. Informatika i ee Primeneniya - Inform. Appl. 7(1):105-115.
- Kudryavtsev, A. A., and S. Ya. Shorgin. 2009. Bayesovskie modeli massovogo obsluzhivaniya i nadezhnosti: eksponentsial'no-erlangovskiy sluchay [Bayesian queuing and reliability models: An exponential-Erlang case]. In-formatika i ee Primeneniya - Inform. Appl. 3(1):44-48.
- Gradshteyn, I. S., and I. M. Ryzhik. 1971. Tablitsy inte- gralov, summ, ryadov i proizvedeniy [Tables of integrals, sums, series, and products]. Moscow: Nauka. 1108 p.
[+] About this article
Title
BAYESIAN BALANCE MODELS
Journal
Informatics and Applications
2018, Volume 12, Issue 3, pp 18-27
Cover Date
2018-08-30
DOI
10.14357/19922264180303
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
Bayesian method; mixed distributions; balance index; advantage index; balance process; Nakagami m-distribution
Authors
A. A. Kudryavtsev
Author Affiliations
Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, 1-52 Leninskiye Gory, GSP-1, Moscow 119991, Russian Federation
|