Informatics and Applications
2017, Volume 11, Issue 4, pp 38-46
PATTERN-BASED ANALYSIS OF PROBABILISTIC AND STATISTICAL CHARACTERISTICS OF EXTREME PRECIPITATION
Abstract
Precipitations are the key parameters of hydrological models; so, research related to precipitation processes is necessary for solving various applied problems. The paper demonstrates a violation of the Markov property for precipitation observed in essentially different climatic regions - in the cities of Potsdam and Elista.
Such information about the data, along with previously studied properties, represents the basic information which is necessary for the further correct construction of probabilistic models, in particular, for probability distribution of the volumes of extreme precipitation. For the analysis of the probabilistic behavior of the precipitation process and the construction of forecasts, it is suggested to use chains of events (patterns) extracted from the data. At the same time, statistical procedures are automated using the software tools of the MATLAB package. Neural networks were used as an alternative forecasting tool based on patterns, and the best results were demonstrated via the architecture that takes into account a seasonality, has two hidden layers of neurons and a sigmoid activation function. The ideas for further research in this field are suggested.
[+] References (24)
- Strauch, M., C. Bernhofer, S. Koide, M. Volk, C. Lorz,
and F. Makeschin. 2012. Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. J. Hydrol. 414:413-424.
- Krzysztofowicz, R. 2001. The case for probabilistic forecasting in hydrology. J. Hydrol. 249(1-4):2-9.
- Pinson, P., H. Madsen, H. A. Nielsen, G. Papaefthymiou,
and B. Klockl. 2009. From probabilistic forecasts to statistical scenarios of short-term wind power production.
Wind Energy 12(1):51-62.
- Gneiting, T, F Balabdaoui, andA. E. Raftery. 2007. Probabilistic forecasts, calibration and sharpness. J. Roy. Stat.
Soc. B 69:243-268.
- Kharin, V. V., F. W Zwiers, X. Zhang, and G. C. Hegerl.
2007. Changes in temperature and precipitation extremes
in the IPCC ensemble of global coupled model simulations. J. Climate 20(8):1419-1444.
- Zolina, O., C. Simmer, A. Kapala, and S. K. Gulev. 2005.
On the robustness of the estimates of centennial-scale
variability in heavy precipitation from station data over
Europe. Geophys. Res. Lett. 32:L14707-1-L14707-5.
- Korolev, V. Yu., and A. K. Gorshenin. 2017. O raspredelenii veroyatnostey ekstremal'nykh osadkov [The probability distribution of extremal precipitations]. Dokl. RAN [Dokl. Earth Sci.] 477(2):1461-1466.
- Zolina, O., C. Simmer, K. Belyaev, S. Gulev, and P Kolter- mann. 2013. Changes in the duration of European wet and dry spells during the last 60 years. J. Climate 26:2022-2047.
- Korolev, V.Yu., A. K. Gorshenin, S. K. Gulev, K. P. Belyaev, and A. A. Grusho. 2017. Statistical analysis of precipitation events. AIP Conf. Proc. 1863:090011-1- 090011-4.
- Gould, PG., A.B. Koehler, J. K. Ord, R.D. Snyder, R. J. Hyndman, and F. Vahid-Araghi. 2008. Forecasting time series with multiple seasonal patterns. European J. Oper. Res. 191(1):207-222.
- Abaurrea, J. 2005. Forecasting local daily precipitation patterns in a climate change scenario. Clim. Res. 28(3):183-197.
- Stopa, J. E., K. F. Cheung, H. L. Tolman, andA. Chawla. 2013. Patterns and cycles in the Climate Forecast System Reanalysis wind and wave data. Ocean Model. 70:207-220.
- Zolina, O., C. Simmer, K. Belyaev, A. Kapala, and S. K. Gulev. 2009. Improving estimates of heavy and extreme precipitation using daily records from European rain gauges. J. Hydrometeorol. 10:701-716.
- Gorshenin, A. K. 2017. O nekotorykh matematicheskikh i programmnykh metodakh postroeniya strukturnykh modeley informatsionnykh potokov [On some mathematical and programming methods for construction of structural models of information flows]. Informatika i ee Primeneniya - Inform. Appl. 11(1):58-68.
- Gorshenin, A., and V. Kuzmin. 2016. On an interface of the online system for a stochastic analysis of the varied information flows. AIP Conf. Proc. 1738:220009-1- 220009-4.
- Batanov, G. M., A. K. Gorshenin, V. Yu. Korolev,
D. V. Malakhov, and N. N. Skvortsova. 2012. The evolution of probability characteristics of low-frequency plasma turbulence. Math. Models Computer Simulations 4(1):10-
25.
- Gorshenin, A. K., and V. Kuzmin. 2015. Online system for the construction of structural models of information flows. 7th Congress (International) on Ultra Modern Telecommu-nications and Control Systems and Workshops Proceedings. Piscataway, NJ: IEEE. 216-219.
- Gorshenin, A. K., andV. Yu. Kuzmin. 2017. Research sup-port system for stochastic data processing. Pattern Recogn. Image Anal. 27(3):518-524.
- Gorshenin, A. K., V. Korolev, V. Kuzmin, and A. Zeifman. 2013. Coordinate-wise versions of the grid method for the analysis of intensities of non-stationary information flows
by moving separation of mixtures of gamma-distribution. 27th European Conference on Modelling and Simulation Proceedings. Dudweiler, Germany: Digitaldruck Pirrot GmbHP. 565-568.
- Gorshenin A. K., andV. Korolev. 2013. Modelling of sta-tistical fluctuations of information flows by mixtures of gamma distributions. 27th European Conference on Mod-elling and Simulation Proceedings. Dudweiler, Germany: Digitaldruck Pirrot GmbHP. 569-572.
- De Freitas, J., M. Niranjan, and A. Gee. 2000. Dynamic learning with the EM algorithm for neural networks. J. VLSISig. Proc. Syst. 26(1-2):119-131.
- Ng, S. K., andG. J.McLachlan. 2004. Using the EM algo-rithm to train neural networks: Misconceptions and a new algorithm for multiclass classification. IEEE T. Neural Networ. 15(3):738-749.
- Audhkhasi, K., O. Osoba, and B. Kosko. 2016. Noise- enhanced convolutional neural networks. Neural Networks 78:15-23.
- Gorshenin, A.K., and V. Yu. Kuzmin. 2017. Freymvork vychislitel'noy chasti sistemy podderzhki nauchnykh issle- dovaniy [Framework for computational part of scientific research support system]. Certificate RF of state registration of computer programs No. 2017617610.
[+] About this article
Title
PATTERN-BASED ANALYSIS OF PROBABILISTIC AND STATISTICAL CHARACTERISTICS OF EXTREME PRECIPITATION
Journal
Informatics and Applications
2017, Volume 11, Issue 4, pp 38-46
Cover Date
2017-12-30
DOI
10.14357/19922264170405
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
precipitations; patterns; forecast; neural networks; probabilistic forecasting; Markov property
Authors
A. K. Gorshenin ,
Author Affiliations
Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences, 36 Nakhimovski Prosp., Moscow 117997, Russian Federation
|