Informatics and Applications
2017, Volume 11, Issue 4, pp 26-37
SOME PROPERTIES OF THE MITTAG-LEFFLER DISTRIBUTION AND RELATED PROCESSES
Abstract
The paper contains an overview of some properties of the Mittag-Leffler distribution. Main attention is paid to its representability as a mixed exponential law The possibility to represent the Mittag-Leffler distribution as a scale mixture of half-normal and uniform distributions is discussed as well. It is shown that the Mittag-Leffler distribution can be used as an asymptotic approximation to the distributions of several statistics constructed from samples with random sizes. A new two-stage grid method for the estimation of the parameter of the Mittag-Leffler distribution is described. This method is based on the representation of the Mittag-Leffler distribution as a mixed exponential law Two ways are considered to extend the notion of the Mittag-Leffler distribution to Poisson-type stochastic processes. The first way leads to a special mixed Poisson process and the second leads to a special renewal process simultaneously being a doubly stochastic Poisson process (Cox process). In limit theorems for randomly stopped random walks in both of these cases, the limit laws are fractionally stable distributions representable as normal scale mixtures with different mixing distributions.
[+] References (40)
- Weron, K., andM. Kotulski. 1996. On the Cole-Cole re-laxation function and related Mittag-Leffler distributions. PhysicaA 232: 180-188.
- Gorenflo, R., and F Mainardi. 2008. Continuous time random walk, Mittag-Leffler waiting time and fractional diffusion: Mathematical aspects. Anomalous transport: Foundations and applications. Eds. R. Klages, G. Radons, and I. M. Sokolov. Weinheim, Germany: Wiley-VCH. Ch. 4. P. 93-127. Available at: http://arxiv.org/abs/0705.0797 (accessed December 7, 2017).
- Gorenflo R., A. A. Kilbas, F. Mainardi, and S. V. Rogosin. 2014. Mittag-Leffler functions, related topics and applica-tions. Springer monographs in matematics ser. Berlin- New York: Springer. 457 p.
- Jose, K.K., P. Uma, V. S. Lekshmi, and H. J. Haubold.
2010. Generalized Mittag-Leffler distributions and pro-cesses for applications in astrophysics and time series modeling. 3rd UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science. Astrophysics and Space Science Proceedings. New York, NY: Springer. 79-92.
- Scalas, E. 2006. The application of continuous-time random walks in finance and economics. Physica A 362:225239.
- Meerschaert, M.M., and E. Scalas. 2006. Coupled con-tinuous time random walks in finance. PhysicaA 370:114-118.
- Korolev, V. Yu., and A. I. Zeifman. 2017. Convergence of statistics constructed from samples with random sizes to the Linnik and Mittag-Leffler distributions and their generalizations. J. Korean Stat. Soc. 46:161-181.
- Kolokoltsov, V. N., V. Yu. Korolev, and V. V. Uchaikin. 2001. Fractional stable distributions. J. Math. Sci. 105(6):2569-2576.
- Bunge, J. 1996. Compositions semigroups and random stability. Ann. Probab. 24:1476-1489.
- Klebanov, L. B., and S. T. Rachev. 1996. Sums of a random number of random variables and their approximations with e-accompanying infinitely divisible laws. Serdica 22:471-498.
- Kovalenko, I. N. 1965. O klassepredel'nykhraspredeleniy dlya redeyushchikh potokov odnorodnykh sobytiy [On the class of limit distributions for rarefied flows of homoge-neous events]. Litovskiy Matematicheskiy Sbornik [Lith. Math. J.] 5(4):569-573.
- Gnedenko, B. V., and I. N. Kovalenko. 1968. Introduction to queueing theory. Jerusalem: Israel Program for Scientific Translations. 281 p.
- Gnedenko, B. V., and I. N. Kovalenko. 1989 Introduction to queueing theory. 2nd ed. Boston: Birkhauser. 314 p.
- Gnedenko, B.V., and V. Yu. Korolev. 1996. Random sum-mation: Limit theorems and applications. Boca Raton: CRC Press. 288 p.
- Pillai, R. N. 1989. Harmonic mixtures and geometric infinite divisibility. J. Indian Stat. Assoc. 28:87-98.
- Pillai, R. N. 1990. On Mittag-Leffler functions and related distributions. Ann. I. Stat. Math. 42:157-161.
- Linnik, Yu. V. 1953. Lineynye formy i statisticheskie kri- terii. I, II [Linear forms and statistical criteria. I, II]. Ukrainskiy Matematicheskiy Zh. [Ukr. Math. J.] 5:207243; 5:247-290.
- Kotz, S., T. J. Kozubowski, and K. Podgorski. 2001. The Laplace distribution and generalizations: A revisit with ap-plications to communications, economics, engineering, and finance. Boston, MA: Birkhauser Basel. 367 p.
- Pillai, R. N. 1985. Semi-a-Laplace distributions. Com- mun. Stat. Theor. M. 14:991-1000.
- Laha, R. G. 1961. On a class of unimodal distributions. P. Am. Math. Soc. 12:181-184.
- Devroye, L. 1990. A note on Linnik's distribution. Stat. Probabil. Lett. 9:305-306.
- Kotz, S., I.V. Ostrovskii, and A. Hayfavi. 1995. Analytic and asymptotic properties of Linnik's probability densities. I. J. Math. Anal. Appl. 193:353-371.
- Kotz, S., I.V. Ostrovskii, and A. Hayfavi. 1995. Analytic and asymptotic properties of Linnik's probability densities. II. J. Math. Anal. Appl. 193:497-521.
- Zolotarev, V. M. 1983. Odnomernye ustoychivye rasprede- leniya [One-dimensional stable distributions]. Moscow: Nauka. 304 p.
- Korolev, V. Yu. 2016. Product representations for random variables with the Weibull distributions and their applica-tions. J. Math. Sci. 218(3):298-313.
- Kozubowski, T. J. 1998. Mixture representation of Linnik distribution revisited. Stat. Probabil. Lett. 38:157-160.
- Gradshtein, I. S., and I. M. Ryzhik. 1971. Tablitsy inte- gralov, summ, ryadov i proizvedeniy [Tables of integrals, sums, series and products]. Moscow: Nauka. 1108 p.
- Walker, S. G., and E. Guttierez-Pena. 1999. Robustifying Bayesian procedures (with discussion). Bayesian statistics. Eds. J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith. New York, NY: Oxford University Press. 6:685-710.
- Korolev, V. Yu. 2016. Predel'nye raspredeleniya dlya dvazhdy stokhasticheski prorezhennykh protsessov vosstanovleniya i ikh svoystva [Limit theorems for doubly stochastically rarefied renewal processes and their properties]. Teoriya Veroyatnostey iee Primineniya [Theor. Probab. Appl.] 61:753-773.
- Korolev, V. Yu. 1995. Convergence of random sequences with the independent random indices. I. Theor. Probab. Appl. 39(2):282-297.
- Korolev, V. Yu. 1996. Convergence of random sequences with independent random indices. II. Theor. Probab. Appl. 40(4):770-772.
- Kozubowski, T. J. 2001. Fractional moment estimation of Linnik and Mittag-Leffler parameters. Math. Comput. Model. 34(9-11):1023-1035.
- Cahoy, D. E. 2013. Estimation of Mittag-Leffler parameters. Commun. Stat. Simul. C. 42(2): 303-315.
- Korolev, V. Yu., and A. Yu. Korchagin. 2014. Modifi- tsirovannyy setochnyy metod razdeleniya dispersionno- sdvigovykh smesey normal'nykh zakonov [A modified grid method for the separation of normal variance-mean mixtures]. Informatika i ee Primeneniya - Inform. Appl. 8(4):11-19.
- Korolev, V.Yu., A.Yu. Korchagin, and A.I. Zeifman. 2016. Teorema Puassona dlya skhemy ispytaniy Bernulli so sluchaynoy veroyatnost'yu uspekha i diskretnyy analog raspredeleniya Veybulla [The Poisson theorem for the scheme of Bernoulli trials with a random probability of
success]. Informatika i ee Primeneniya - Inform. Appl. 10(4):11-20.
- Korolev, V. Yu. 2011. Veroyatnostno-statisticheskie metody dekompozitsii volatil'nosti khaoticheskikh processov [Prob-abilistic and statistical methods for the decomposition of volatility of chaotic processes]. Moscow: MSU Publs. 512 p.
- Kingman, J. F. C. 1964. On doubly stochastic Poisson processes. P. Camb. Philos. Soc. 60(4): 923-930.
- Grandell, J. 1976. Doubly stochastic Poisson processes. Lecture notes in mathematics ser. Berlin - Heidelberg - New York: Springer. Vol. 529. 244 p.
- Meerschaert, M. M., and H. P. Scheffler. 2004. Limit the-orems for continuous-time random walks with infinite mean waiting times. J. Appl. Probab. 41(3):623-638.
- Meerschaert, M.M., E. Nane, and P. Vellaisamy. 2011. The fractional Poisson process and the inverse stable sub- ordinator. Electron. J. Probab. Paper No. 59. 1600-1620. Available at: ArXiv:1007.5051v1 (accessed December 7, 2017).
[+] About this article
Title
SOME PROPERTIES OF THE MITTAG-LEFFLER DISTRIBUTION AND RELATED PROCESSES
Journal
Informatics and Applications
2017, Volume 11, Issue 4, pp 26-37
Cover Date
2017-12-30
DOI
10.14357/19922264170404
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
Mittag-Leffler distribution; Linnik distribution; stable distribution; Weibull distribution; exponential distribution; mixed Poisson process; renewal process; asymptotic approximation
Authors
V. Yu. Korolev , ,
Author Affiliations
Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, 1-52 Lenin- skiye Gory, Moscow 119991, GSP-1, Russian Federation
Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
Hangzhou Dianzi University, Higher Education Zone, Hangzhou 310018, China
|