Informatics and Applications
2017, Volume 11, Issue 3, pp 2-17
ANALOGS OF GLESER’S THEOREM FOR NEGATIVE BINOMIAL AND GENERALIZED GAMMA DISTRIBUTIONS AND SOME OF THEIR APPLICATIONS
Abstract
It is proved that the negative binomial distributions with the shape parameter less than one are mixed geometric distributions. The mixing distribution is written out explicitly. Thus, the similar result of L. Gleser, stating that the gamma distributions with the shape parameter less than one are mixed exponential distributions, is transferred to the discrete case. An analog of Gleser’s theorem is also proved for generalized gamma distributions.
For mixed binomial distributions related to the negative binomial laws with the shape parameter less than one, the case of a small probability of success is considered and an analog of the Poisson theorem is proved. The representation of the negative binomial distributions as mixed geometric laws is used to prove limit theorems for negative binomial random sums of independent identically distributed random variables, in particular, analogs of the law of large numbers and the central limit theorem. Both cases of light and heavy tails are considered.
The expressions for the moments of limit distributions are obtained. The obtained alternative equivalent mixture representations of the limit laws provide better understanding of how mixed probability (Bayesian) models are formed.
[+] References (41)
- Zolina, O., C. Simmer, K. Belyaev, S. Gulev, and P. Koltermann. 2013. Changes in the duration of European wet and dry spells during the last 60 years. J. Climate 26:2022-2047.
- Korolev, V. Yu., A.K. Gorshenin, S. K. Gulev, K. P. Belyaev, and A. A. Grusho. 2017. Statistical analysis of precipitation events. AIP Conf. Proc. 1863(1). doi: 10.1063/1.4992276.
- Kingman, J. F C. 1993. Poisson processes. Oxford: Clarendon Press. 104 p.
- Korolev, V. Yu., V. E. Bening, and S.Ya. Shorgin. 2011. Matematicheskie osnovy teorii riska [Mathematical fundamentals of risk theory]. 2nded. Moscow: Fizmatlit. 591 p.
- Korolev, V.Yu. 2016. Predel’nye raspredeleniya dlya dvazhdy stohasticheski prorezhennykh protsessov vosstanovleniya i ikh svoystva [Limit distributions for doubly stochastically rarefied renewal processes and their properties]. Teoriya veroyatnostey i ee primeneniya [Theor. Probab. Appl.] 61(4):753—773.
- Korolev, V.Yu., A.Yu. Korchagin, and A.I. Zeifman. 2016. Teorema Puassona dlya skhemy ispytaniy Bernulli so sluchaynoy veroyatnost’yu uspekha i diskretnyy analog raspredeleniya Veybulla [The Poisson theorem for the scheme of Bernoulli trials with a random probability of success and a discrete analog of the Weibull distribution]. Informatika i ee Primeneniya — Inform. Appl. 10(4):11—20.
- Korolev, V.Yu., A.Yu. Korchagin, and A.I. Zeifman. 2017. On doubly stochastic rarefaction of renewal processes. AIPConf. Proc. 1863(1). doi: 10.1063/1.4992275.
- Gleser, L. J. 1989. The gamma distribution as a mixture of exponential distributions. Am. Stat. 43:115—117.
- Gnedenko, B. V., and V. Yu. Korolev. 1996. Random summation: Limit theorems and applications. Boca Raton: CRC Press. 267 p.
- Stacy, E. W 1962. A generalization of the gamma distribution. Ann. Math. Stat. 33:1187—1192.
- Zaks, L.M., and V.Yu. Korolev. 2013. Obobshchennye dispersionnye gamma-raspredeleniya kak predel’nye dlya sluchaynykh summ [Generalized variance gamma distributions as limit laws for random sums]. Informatika i ee Primeneniya — Inform. Appl. 7(1):105—115.
- Zolotarev, V. M. 1983. Odnomernye ustoychivye raspredeleniya [One-dimensional stable distributions]. Moscow: Nauka. 304 p.
- Schneider, W. R. 1986. Stable distributions: Fox function representation and generalization. Stochastic processes in classical and quantum systems. Eds. S. Albeverio, G. Casati, and D. Merlini. Berlin: Springer. P. 497—511.
- Uchaikin, V.V., and V.M. Zolotarev. 1999. Chance and stability. Utrecht: VSP. 570 p.
- Korolev, V. Yu. 2016. Product representations for random variables with Weibull distributions and their applications. J. Math. Sci. 218(3):298—313.
- Tucker, H. 1975. On moments of distribution functions attracted to stable laws. Houston J. Math. 1(1):149—152.
- Korolev, V.Yu., and A. I. Zeifman. 2017. Convergence of statistics constructed from samples with random sizes to the Linnik and Mittag—Leffler distributions and their generalizations. J. Korean Stat. Soc. 46:161—181.
- Gorenflo, R., A. A. Kilbas, F Mainardi, and S.V. Rogosin. 2014. Mittag—Leffler functions, related topics and applications. Berlin — New York: Springer. 443 p.
- Bunge, J. 1996. Compositions semigroups and random stability. Ann. Probab. 24:1476—1489.
- Klebanov, L. B., and S. T. Rachev. 1996. Sums of a random number of random variables and their approximations with e-accompanying infinitely divisible laws. Serdica 22:471— 498.
- Kovalenko, I. N. 1965. O klasse predel’nykh raspredeleniy dlya redeyushchikh potokov odnorodnykh sobytiy [On the class of limit distributions for rarefying flows of homogeneous events]. Litovskiy matematicheskiy sbornik [Lithuanian Math. J.] 5(4):569-573.
- Gnedenko, B. V., and I. N. Kovalenko. 1968. Introduction to queueing theory. Jerusalem: Israel Program for Scientific Translations. 281 p.
- Gnedenko, B. V., and I. N. Kovalenko. 1989. Introduction to queueing theory. 2nd ed. Boston: Birkhauser. 314 p.
- Pillai, R. N. 1990. Harmonic mixtures and geometric infinite divisibility. J. Indian Stat. Assoc. 28:87-98.
- Pillai, R. N. 1990. On Mittag—Leffler functions and related distributions. Ann. Stat. Math. 42:157—161.
- Weron, K., andM. Kotulski. 1996. On the Cole-Cole relaxation function and related Mittag—Leffler distributions. PhysicaA 232:180—188.
- Gorenflo, R., and F Mainardi. 2008. Continuous time random walk, Mittag—Leffler waiting time and fractional diffusion: Mathematical aspects. Ch. 4. Anomalous transport: Foundations and applications. Eds. R. Klages, G. Radons, and I. M. Sokolov. Weinheim, Germany: Wiley-VCH. 93—127. Available at: http://arxiv.org/abs/0705.0797 (accessed August 25, 2017).
- Greenwood,M.,andG.U.Yule. 1920.Aninquiryintothe nature of frequency-distributions of multiple happenings, etc. J. R. Stat. Soc. 83:255—279.
- Bol’shev, L. N., and N.V. Smirnov. 1983. Tablitsy matematicheskoy statistiki [Tables of mathematical statistics]. 3rded. Moscow: Nauka. 416 p.
- Bernstein, S. N. 1929. Surlesfonctionsabsolument monotones. Acta Math. 52(1):1—66.
- Grandell, J. 1997. Mixed Poisson processes. London: Chapman and Hall. 268 p.
- Kotz, S., and I. V. Ostrovskii. 1996. A mixture representation of the Linnik distribution. Stat. Probabil. Lett. 26:61—64.
- Korolev, V. Yu., andA. I. Zeifman. 2017. Anote onmixture representations for the Linnik and Mittag—Leffler distributions and their applications. J. Math. Sci. 218(3):314— 327.
- Linnik, Yu. V. 1953. Lineynye formy i statisticheskie kriterii. I, II [Linear forms and statistical tests, I, II]. Ukrainskiy matematicheskiy zh. [Ukrainian Math. J.] 5(2):207— 243; 5(3):247—290.
- Laha, R. G. 1961. On a class of unimodal distributions. P. Am. Math. Soc. 12:181—184.
- Devroye, L. 1990. A note on Linnik’s distribution. Stat. Probabil. Lett. 9:305—306.
- Kotz, S., I. V. Ostrovskii, andA. Hayfavi. 1995. Analytic and asymptotic properties of Linnik’s probability densities, I. J. Math. Anal. Appl. 193:353—371.
- Kotz, S., I. V Ostrovskii, and A. Hayfavi. 1995. Analytic and asymptotic properties of Linnik’s probability densities, II. J. Math. Anal. Appl. 193:497-521.
- Carr, P.P., D.B. Madan, and E. C. Chang. 1998. The Variance Gamma process and option pricing. Eur. Financ. Rev. 2:79-105.
- Korolev, V. Yu. 2014. Generalized hyperbolic laws as limit distributions for random sums. Theor. Probab. Appl. 58(1):63—75.
- Gorshenin, A. K., V. Yu. Korolev, and A. M. Tursunbaev 2008. Mediannye modifikatsii EM- i SEM-algoritmov dlya razdeleniya smesey veroyatnostnykh raspredeleniy i ikh primenenie k dekompozitsii volatil’nosti finansovykh indeksov [Median modifications of the EM- and SEM- algorithms for the separation of mixtures of probability distributions and their application to the decomposition of volatility of financial indexes]. Informatika i ee Primeneniya — Inform. Appl. 2(4):12—47.
[+] About this article
Title
ANALOGS OF GLESER’S THEOREM FOR NEGATIVE BINOMIAL AND GENERALIZED GAMMA DISTRIBUTIONS AND SOME OF THEIR APPLICATIONS
Journal
Informatics and Applications
2017, Volume 11, Issue 3, pp 2-17
Cover Date
2017-09-30
DOI
10.14357/19922264170301
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
negative binomial distribution; mixed geometric distribution; generalized gamma distribution; stable distribution; Laplace distribution; Mittag-Leffler distribution; Linnik distribution; mixed binomial distribution; Poisson theorem; random sum; law of large numbers; central limit theorem
Authors
V. Yu. Korolev , ,
Author Affiliations
Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, 1-52 Lenin- skiye Gory, Moscow 119991, GSP-1, Russian Federation
Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
Hangzhou Dianzi University, Higher Education Zone, Hangzhou 310018, China
|