| Informatics and Applications2017, Volume 11, Issue 2, pp 101-111MODIFICATED ELLIPSOIDAL CONDITIONALLY OPTIMAL FILTERS FOR NONLINEAR STOCHASTIC SYSTEMS ON MANIFOLDS
I.	N. Sinitsyn
V. I. Sinitsyn
E. R. Korepanov
 AbstractThe analytical synthesis theory for modificated ellipsoidal conditionally optimal filters (MECOF) for nonlinear stochastic systems on manifolds (MStS) based on the nonnormed a posteriori characteristic function is developed. Gaussian and non-Gaussian MStS are considered. The MECOF algorithms are more simple than the ECOF algorithms. The MECOF algorithms are the basis of the software tool "StS-Filter" (version 2017).[+] References (10) 
Sinitsyn, I. N. 2016. Ortogonal'nye suboptimal'nye fil'try dlya nelineynykh stokhasticheskikh sistem na mnogo- obraziyakh [Orthogonal suboptimal filters for nonlinear stochastic systems on manifolds]. Informatika i ee Prime- neniya - Inform. Appl. 10(1):34-44.
Sinitsyn, I. N. 2016. Normal'nye i ortogonal'nye subopti-mal'nye fil'try dlya nelineynykh stokhasticheskikh sistem na mnogoobraziyakh [Normal and orthogonal condition-ally optimal filters for nonlinear stochastic systems on manifolds]. Informatika i ee Primeneniya - Inform. Appl. 10(1):199-226.
Sinitsyn, I. N., V. I. Sinitsyn, and E. R. Korepanov. 2016. Ellipsoidal'nye suboptimal'nye fil'try dlya nelineynykh stokhasticheskikh sistem na mnogoobraziyakh [Ellipsoidal conditionally optimal filters for nonlinear stochastic systems on manifolds]. Informatika i ee Primeneniya - Inform. Appl. 10(1):24-35.
Sinitsyn, I. N., and V. I. Sinitsyn. 2013. Lektsii po teorii normal'noy i ellipsoidal'noy approkskimatsii rasprede- leniy v stokhasticheskikh sistemakh [Lectures on normal and ellipsoidal approximation of distributions in stochastic systems]. Moscow: TORUS PRESS. 488 p.
Sinitsyn, I. N. 2007. Fil'try Kalmana i Pugacheva [Kalman and Pugachev filters]. 2nd ed. Moscow: Logos. 776 p.
Sinitsyn, I. N., V. I. Sinitsyn, and E. R. Korepanov. 2016. Modifitsirovannye ellipsoidal'nye suboptimal'nye fil'try dlya nelineynykh stokhasticheskikh sistem na mnogoob- raziyakh [Modificated ellipsoidal conditionally optimal filters for nonlinear stochastic systems on manifolds]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 26(2):79-97.
Pugachev, V. S., and I. N. Sinitsyn. 2000, 2004. Teoriya stokhasticheskikh sistem [Stochastic systems. Theory and applications]. Moscow: Logos. 1000 p.
Wonham, M. 1965. Some applications of stochastic dif-ferential equations to optimal nonlinear filtering. J. Soc. Ind. Appl. Math. A 2(3):347-369.
Korolyuk, V. S., N.I. Portenko, A.V. Skorokhod, and A. F. Turbin, eds. 1985. Spravochnikpo teorii veroyatnosti i matematicheskoy statistike [Handbook: Probability theory and mathematical statistics]. Moscow: Nauka. 640 p.
Zakai, M. 1969. On the optimal filtering of diffusion processes. Ztschr. Wahrschein lichkeitstheor. Verm. Geb. 11:230-243.
 [+] About this article
Title 
MODIFICATED ELLIPSOIDAL CONDITIONALLY OPTIMAL FILTERS FOR NONLINEAR STOCHASTIC SYSTEMS ON MANIFOLDS
 Journal
Informatics and Applications
2017, Volume 11, Issue 2, pp 101-111 Cover Date
2017-06-30  
 DOI
10.14357/19922264170211
 Print ISSN
1992-2264 
 Publisher
Institute of Informatics Problems, Russian Academy of Sciences
 Additional LinksKey words
accuracy and sensitivity equations; ellipsoidal approximation and linearization methods (EAM & ELM); ellipsoidal conditionally optimal filter (ECOF); modificated ellipsoidal conditionally optimal filter (MECOF); nonnormed characteristic function; Poisson noise; conditionally optimal filter (COF); Wiener noise
 Authors 
I.	N. Sinitsyn  , V. I. Sinitsyn  , and E. R. Korepanov   Author Affiliations Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
 |