Informatics and Applications
2017, Volume 11, Issue 2, pp 101-111
MODIFICATED ELLIPSOIDAL CONDITIONALLY OPTIMAL FILTERS FOR NONLINEAR STOCHASTIC SYSTEMS ON MANIFOLDS
- I. N. Sinitsyn
- V. I. Sinitsyn
- E. R. Korepanov
Abstract
The analytical synthesis theory for modificated ellipsoidal conditionally optimal filters (MECOF) for nonlinear stochastic systems on manifolds (MStS) based on the nonnormed a posteriori characteristic function is developed. Gaussian and non-Gaussian MStS are considered. The MECOF algorithms are more simple than the ECOF algorithms. The MECOF algorithms are the basis of the software tool "StS-Filter" (version 2017).
[+] References (10)
- Sinitsyn, I. N. 2016. Ortogonal'nye suboptimal'nye fil'try dlya nelineynykh stokhasticheskikh sistem na mnogo- obraziyakh [Orthogonal suboptimal filters for nonlinear stochastic systems on manifolds]. Informatika i ee Prime- neniya - Inform. Appl. 10(1):34-44.
- Sinitsyn, I. N. 2016. Normal'nye i ortogonal'nye subopti-mal'nye fil'try dlya nelineynykh stokhasticheskikh sistem na mnogoobraziyakh [Normal and orthogonal condition-ally optimal filters for nonlinear stochastic systems on manifolds]. Informatika i ee Primeneniya - Inform. Appl. 10(1):199-226.
- Sinitsyn, I. N., V. I. Sinitsyn, and E. R. Korepanov. 2016. Ellipsoidal'nye suboptimal'nye fil'try dlya nelineynykh stokhasticheskikh sistem na mnogoobraziyakh [Ellipsoidal conditionally optimal filters for nonlinear stochastic systems on manifolds]. Informatika i ee Primeneniya - Inform. Appl. 10(1):24-35.
- Sinitsyn, I. N., and V. I. Sinitsyn. 2013. Lektsii po teorii normal'noy i ellipsoidal'noy approkskimatsii rasprede- leniy v stokhasticheskikh sistemakh [Lectures on normal and ellipsoidal approximation of distributions in stochastic systems]. Moscow: TORUS PRESS. 488 p.
- Sinitsyn, I. N. 2007. Fil'try Kalmana i Pugacheva [Kalman and Pugachev filters]. 2nd ed. Moscow: Logos. 776 p.
- Sinitsyn, I. N., V. I. Sinitsyn, and E. R. Korepanov. 2016. Modifitsirovannye ellipsoidal'nye suboptimal'nye fil'try dlya nelineynykh stokhasticheskikh sistem na mnogoob- raziyakh [Modificated ellipsoidal conditionally optimal filters for nonlinear stochastic systems on manifolds]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 26(2):79-97.
- Pugachev, V. S., and I. N. Sinitsyn. 2000, 2004. Teoriya stokhasticheskikh sistem [Stochastic systems. Theory and applications]. Moscow: Logos. 1000 p.
- Wonham, M. 1965. Some applications of stochastic dif-ferential equations to optimal nonlinear filtering. J. Soc. Ind. Appl. Math. A 2(3):347-369.
- Korolyuk, V. S., N.I. Portenko, A.V. Skorokhod, and A. F. Turbin, eds. 1985. Spravochnikpo teorii veroyatnosti i matematicheskoy statistike [Handbook: Probability theory and mathematical statistics]. Moscow: Nauka. 640 p.
- Zakai, M. 1969. On the optimal filtering of diffusion processes. Ztschr. Wahrschein lichkeitstheor. Verm. Geb. 11:230-243.
[+] About this article
Title
MODIFICATED ELLIPSOIDAL CONDITIONALLY OPTIMAL FILTERS FOR NONLINEAR STOCHASTIC SYSTEMS ON MANIFOLDS
Journal
Informatics and Applications
2017, Volume 11, Issue 2, pp 101-111
Cover Date
2017-06-30
DOI
10.14357/19922264170211
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
accuracy and sensitivity equations; ellipsoidal approximation and linearization methods (EAM & ELM); ellipsoidal conditionally optimal filter (ECOF); modificated ellipsoidal conditionally optimal filter (MECOF); nonnormed characteristic function; Poisson noise; conditionally optimal filter (COF); Wiener noise
Authors
I. N. Sinitsyn , V. I. Sinitsyn , and E. R. Korepanov
Author Affiliations
Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|