Informatics and Applications
2017, Volume 11, Issue 2, pp 42-49
PARTICIPANTS' INFORMATION AWARENESS AND EXISTENCE OF EQUILIBRIUM IN POSITIONAL ITERATION GAMES OF MANY PLAYERS
Abstract
In positional games, dynamical decision-making models are studied for the situation when there is
a conflict of interests and participants know the current position of the game. Each player is able to control the
dynamical system partially. The control strategy chosen by a player is a function defined on the system's phase
space. Players check the system's movement and obtain an implicit idea about strategies applied by their partners.
The principle of players' rational behavior consists in trying to achieve the situation of Nash equilibrium. It is
proved that an equilibrium can be reached as a result of collective efforts to choose the system's general program
control. Stability of the solution is reached by using the threat of punishment to those who refuse to fulfill the
program. Positions control and some additional information give players the possibility to identify the guilty player.
Then, after a delay, he/she is punished by all other players. The theorem of existence of an equilibrium is applied to
economic and mathematical model.
[+] References (15)
- Moiseev, N. N. 1975. Elementy teorii optimal'nykh sistem
[Elements ofthe optimal systems theory]. Moscow: Nau-
ka. 527 p.
- Germeyer, Yu. B. 1976. Igry s neprotivopolozhnymi interesami [Games with nonantogonistic interests]. Moscow:
Nauka. 326 p.
- Kononenko, A. F 1980. Struktura optimal'noy strategii v upravlyaemykh dinamicheskikh sistemakh [Optimal strategy structure in control dynamic systems].
Zh. Vyichislitel'noy matematiki i matematicheskoy fiziki [Comput. Math. Math. Phys.] 20(5):1105-1116.
- Vasilyev, N. S. 2014. Koalitsionno ustoychivye effektivnye ravnovesiya v modelyakh kollektivnogo povedeniya s ob- menom informatsiey [Coalitionally stable effective equilibria in collective behavior models with information exchange]. Informatika i ee Primeneniya - Inform. Appl. 8(2):2-13.
- Isaacs, R. 1965. Differential games. New York, NY: John Wiley and Sons. 416 p.
- Pontryagin, L. S. 1980. Lineynye differentsial'nye igry presledovaniya [Linear differential games of pursuit]. Mat. sb. [Mathematical Collection] 112(3):307-330.
- Nikol'skiy, M. S. 1984. Pervyy metod L. S. Pontryagina vdifferentsial'nykhigrakh [L. S. Pontryagin's first method in differential games]. Moscow: MGU. 64 p.
- Krasovskiy, N.N., and A. I. Subbotin. 1974. Pozitsion- nye differentsial'nye igry [Positional differential games]. Moscow: Nauka. 458 p.
- Kononenko, A. F. 1977. O mnogoshagovykh konflik- takh s obmenom informatsiey [On many steps conflicts with information exchange]. Zh. Vychislitel'noy matemati- ki i matematicheskoy fiziki [Comput. Math. Math. Phys.] 17(4):922-931.
- Chistyakov, Yu. E. 1987. Zadacha o situatsiyakh ravnovesiya po Neshu v igre mnogikh lits s pamyat'yu [Nash's equilibrium situation problem in the game of many players with memory]. Prikladnaya matematika
i mekhanika [Appl. Math. Mech.] 2:201-214.
- Kononenko, A.F., and Yu. E. Chistyakov. 1988.
O ravnovesnykh pozitsionnykh stpategiyakh v diffe- pentsial'nykh igpakh mnogikh lits [On equilibrium positional strategies in many players' differential games]. Dokl. USSRAkad. Sci. 299(5):1053-1056.
- Gorelik, V. A., GorelovM. A., andA. F. Kononenko. 1991. Analizkonfliktnykh situatsiyv sistemakh upravleniya [Analysis of conflict situations in control systems]. Moscow: Radio i svyaz. 286 p.
- Gorelov, M.A., and A. F. Kononenko. 2014. Dynamic models of conflicts. II. Equilibria. Automat. Rem. Contr. 75(12):2135-2151.
- Zhukovskiy, V. I. 2010. Vvedenie v differentsial'nye igry pri neopredelennosti. Ravnovesiya po Neshu [Introduction in differential games under uncertainty. Nash's equilibria]. Moscow: URSS. 168 p.
- Petrosyan, L. A. 2012. Teoriya igr [Theory of games]. St. Peterburg: BHV-Peterburg. 432 p.
[+] About this article
Title
PARTICIPANTS' INFORMATION AWARENESS AND EXISTENCE OF EQUILIBRIUM IN POSITIONAL ITERATION GAMES OF MANY PLAYERS
Journal
Informatics and Applications
2017, Volume 11, Issue 2, pp 42-49
Cover Date
2017-06-30
DOI
10.14357/19922264170205
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
differential game; positional iteration game; program control; positional strategy; counter strategy; punishment strategy; guaranty strategy; Nash equilibrium situation; Pareto effectiveness
Authors
N. S. Vasilyev
Author Affiliations
N. E. Bauman Moscow State Technical University, 5 Baumanskaya 2nd Str.,Moscow 105005, Russian Federation
|