Informatics and Applications
2017, Volume 11, Issue 2, pp 25-32
MAXIMIZATION OF AVERAGE STATIONARY PROFIT IN M/G/1 QUEUING SYSTEM
Abstract
The problem of optimization of the queue length threshold in a M/G/1 system is considered in terms of maximizing the marginal return received by the system per unit of time. The profit value consists of the following measures: service fee; hardware maintenance fee; cost of service delay; fine for unhandled requests; and fine for system idle. The author formulates the necessary conditions of existence of a finite threshold in an M/G/1 system and prove the statements of necessary and sufficient conditions for threshold optimality and existence of the finite optimal threshold. The author proposes an algorithm for calculating the optimal threshold value and the corresponding maximal profit. The author presents the results of computational experiments that illustrate the work of the proposed algorithm.
[+] References (8)
- Agalarov, Ya. M. 2015. Porogovaya strategiya ogranicheniya dostupa k resursam v sisteme massovogo obsluzhivaniya M/D/1 s funktsiey shtrafov za nesvoevremennoe ob- sluzhivanie zayavok [The threshold strategy for restricting access in the M/D/1 queuing system with penalty function for late service]. Informatika i ee Primeneniya - Inform. Appl. 9(3):56-65.
- Agalarov, Ya. Ì., M. Ya. Agalarov, and V. S. Shorgin. 2016. Ob optimal'nom porogovom znachenii dliny ocheredi v odnoy zadache maksimizatsii dokhoda sistemy massovogo obsluzhivaniya tipa M/G/1 [About the optimal threshold of queue length in particular problem of profit maximization in the M/G/1 queuing system]. Informatika i ee Primeneniya - Inform. Appl. 10(2):70-79.
- Agalarov, Ya. Ì., M. Ya. Agalarov, and V. S. Shorgin. 2016. Maksimizatsiya dokhoda sistemy massovogo obsluzhiva- niya tipa G/M/1 na mnozhestve porogovykh strategiy s dvumya tochkami pereklyucheniya [Profit maximization in G/M/1 queuing system on a set of threshold strategies
with two switch points]. Sistemy i Sredstva Informatiki - System and Means of Informatics 26(4):74-88.
- Kashtanov, V. A., and E.V. Kondrashova. 2015. Issle- dovanie polumarkovskikh sistem massovogo obsluzhivaniya priupravlyaemom vkhodyashchem potoke. BSMAP-potok [Research of semi-Markov queueing models using controlled input flow. BSMAP-flow]. Upravlenie bol'shimi sis- temami [Large-Scale Systems Control] 57:6-36.
- Grishunina, Yu. B. 2015. Optimal control of queue in the M/G/1/(x system with possibility of customer admission restriction. Automat. Rem. Contr. 76(3):433-445.
- Karlin, S. 1968. A first course in stochastic processes. New York - London: Academic Press. 502 p.
- Bocharov, P. P., and A. V. Pechinkin. 1995. Teoriya massovogo obsluzhivaniya [Queueing theory]. Moscow: RUDN. 529 p.
- Miyazawa, M. 1990. Complementary generating functions for the MX/GI/1/fc and GI/MY/1/k queues and their application to the comparison of loss probabilities. J. Appl. Probab. 27:684-692.
[+] About this article
Title
MAXIMIZATION OF AVERAGE STATIONARY PROFIT IN M/G/1 QUEUING SYSTEM
Journal
Informatics and Applications
2017, Volume 11, Issue 2, pp 25-32
Cover Date
2017-06-30
DOI
10.14357/19922264170203
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
queuing system; threshold management; optimization
Authors
Ya. M. Agalarov
Author Affiliations
Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|