Informatics and Applications
2017, Volume 11, Issue 1, pp 58-68
ON SOME MATHEMATICAL AND PROGRAMMING METHODS FOR CONSTRUCTION OF STRUCTURAL MODELS OF INFORMATION FLOWS
Abstract
The flows of events in the modern information systems are not regular; so, the methods of analysis based on the classical theorems that are correct only under certain regularity conditions can lead to false conclusions including underestimation of risks of extreme events. The key problem of practical modeling and analysis of nonstationary information flows is selection of statistical methods for estimation of the unknown model parameters.
For these purposes, the so-called method of moving the separation of mixtures based on a special decomposition of the original sample into subsamples (windows) and data analysis for each window within the framework of the mixed probability models is traditionally used by the members of Prof. V. Yu. Korolev's Scientific School. The paper describes the methods of stochastic data analysis based on the mixed probability models that can enhance the effectiveness of complex information systems research. The development and application of the proposed methods can be useful for the appropriate areas of applied mathematics and computer sciences.
[+] References (29)
- Korolev, V. Yu. 2011. Veroyatnostno-statisticheskie metody dekompozitsii volatil'nosti khaoticheskikh protsessov [Probabilistic and statistical methods of decomposition of volatility of chaotic processes]. Moscow: Moscow Uni-versity Publishing House. 512 p.
- Korolev, V.Yu., A. K. Gorshenin, S.K. Gulev, and K. P. Belyaev. 2015. Statisticheskoe modelirovanie tur- bulentnykh potokov tepla mezhdu okeanom i atmosfe- roy s pomoshch'yu metoda skol'zyashchego razdeleniya konechnykh normal'nykh smesey [Statistical modeling of air-sea turbulent heat fluxes by the method of moving separation of finite normal mixtures]. Informatika i ee Primeneniya - Inform. Appl. 9(4):3-13.
- Gorshenin, A. K., and V. Yu. Korolev. 2016. A methodology for the identification of extremal loading in data flows in information systems. Comm. Com. Inf. Sc. 638:94-103.
- Gorshenin, A. K., and V.Yu. Korolev. 2016. A noising method for the identification ofthe stochastic structure of information flows. Comm. Com. Inf. Sc. 678:1-11.
- Gorshenin, A. K., and V.Yu. Kuzmin. 2016. Primenenie arkhitektury CUDA pri realizatsii setochnykh algoritmov dlya metoda skol'zyashchego razdeleniya smesey [Appli
cation of the CUDA architecture for implementation of grid-based algorithms for the method of moving separation of mixtures]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 26(4):60-73.
- Gorshenin, A. K. 2016. Kontseptsiya onlayn-kompleksa dlya stokhasticheskogo modelirovaniya real'nykh protses-sov [Concept of online service for stochastic modeling of real processes]. Informatika i ee Primeneniya - Inform. Appl. 10(1):72-81.
- Gorshenin, A., S. Frenkel, and V. Korolev. 2016. On a stochastic approach to a code performance estimation. AIP Conference Proceedings. 1738:220010. 4 p.
- Gorshenin, A. K., and V. Kuzmin. 2015. Online system for the construction of structural models of information flows. 7th Congress (International) on Ultra Modern Telecommu-nications and Control Systems and Workshops (ICUMT) Proceedings. Piscataway, NJ. 216-219.
- Gorshenin, A. K., and V. Kuzmin. 2015. On an interface of the online system for a stochastic analysis of the varied information flows. AIP Conference Proceedings. 1738:220010. 4 p.
- Korolev, V.Yu., A. K. Gorshenin, S.K. Gulev, and K. P. Belyaev. 2015. Statistical modeling of air-sea turbulent heat fluxes by finite mixtures of Gaussian distributions. Comm. Com. Inf. Sc. 564:152-162.
- Gorshenin, A. K. 2016. Programmnyy modul' anali- za statisticheskikh kharakteristik osadkov [The software module to analyze the statistical characteristics of precip-itation] . Certificate RF of State Registration of Computer Programs No. 2016618864.
- Gorshenin, A. K., andV. Yu. Korolev. 2016. Programmnyy modul' predskazaniya osadkov na osnove istoricheskikh patternov [The software module for precipitation prediction based on historical patterns]. Certificate RF of State Registration of Computer Programs No. 2016618887.
- Leadbetter, M. R. 1991. On a basis for " Peaks over Threshold" modeling. Stat. Probabil. Lett. 12(4):357-362.
- Gnedenko, B. V., andV.Yu. Korolev. 1996. Random sum-mation: Limit theorems and applications. Boca Raton, FL: CRC Press, 1996. 288 p.
- Balkema, A., and L. de Haan. 1974. Residual life time at great age. Ann. Probab. 2(5):792-804.
- Pickands, J., III. 1975. Statistical inference using extreme order statistics. Ann. Stat. 3(1):119-131.
- Brey, J. J., and A. Prados. 1996. Stochastic resonance in a one-dimension Ising model. Phys. Lett. A 216:240-246.
- Kosko, B., and S. Mitaim. 2003. Stochastic resonance in noisy threshold neurons. Neural Networks 16(5):755-761.
- Osoba, O., S. Mitaim, and B. Kosko. 2013. The noisy Expectation-Maximization algorithm. Fluct. Noise Lett. 12(3):1350012. 30 p.
- Ushakov, V. G., and N. G. Ushakov. 2015. Ob usrednenii okruglennykh dannykh [On averaging of rounded data] Informatika i ee Primeneniya - Inform. Appl. 9(4):106- 109.
- Kuzmin, V. Yu., A. K. Gorshenin, D. S. Ostroumov, and M. G. Uglitskaya. 2015. Application of GPU and parallel programming on grid methods. AIP Conference Proceed-ings. 1648:250006. 4 p.
- Gorshenin, A., V. Korolev, V. Kuzmin, and A. Zeifman.
2013. Coordinate-wise versions of the grid method for the analysis of intensities of non-stationary information flows
by moving separation of mixtures of gamma-distribution. 27th European Conference on Modelling and Simulation Proceedings. Dudweiler, Germany. 565-568.
- Gorshenin, A. K. 2012. Ustoychivost' masshtabnykhsme- sey normal'nykh zakonov otnositel'no smeshivayushche- go raspredeleniya [Stability of normal scale mixtures with respect to variations in mixing distribution]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 22(1):136-148.
- Gorshenin, A. K. 2012. Ob ustoychivosti sdvigovykh sme- sey normal'nykh zakonov po otnosheniyu k izmeneniyam smeshivayushchego raspredeleniya [On stability of normal location mixtures with respect to variations in mixing dis-tribution]. Informatika i ee Primeneniya - Inform. Appl. 6(2):22-28.
- Korolev, V. Yu., A. Yu. Korchagin, and A. K. Gorshenin. 2015. Nekotorye svoystva dispersionno-sdvigovykh sme- sey normal'nykh zakonov [Some properties of variance- mean normal mixtures]. Statisticheskie metody otseni- vaniya iproverkigipotez [Statistical Methods of Estimation and Hypothesis Testing] 26:134-153.
- Gorshenin, A. K. 2015. On implementation of EM-type algorithms in the stochastic models for a matrix computing on GPU. AIP Conference Proceedings. 1648:250008. 4 p.
- Zolina, O., C. Simmer, K. Belyaev, S. Gulev, and P. Kolter- mann. 2013. Changes in the duration ofEuropean wet and dry spells during the last 60 years. J. Climate 26(6):2022- 2047.
- Gorshenin, A. K., and Sh. Sh. Kagermanov. 2016. Modul' graficheskoy identifikatsii pol'zovateley veb-servisa [The module for web service user's graphical identification]. Certificate RF of State Registration Of Computer Programs No. 2016661021.
- Batanov, G.M., A. K. Gorshenin, V. Yu. Korolev, D. V. Malakhov, and N. N. Skvortsova. 2012. The evolution of probability characteristics of low-frequency plasma turbulence. Math. Models Computer Simulations 4(1): 10-25.
[+] About this article
Title
ON SOME MATHEMATICAL AND PROGRAMMING METHODS FOR CONSTRUCTION OF STRUCTURAL MODELS OF INFORMATION FLOWS
Journal
Informatics and Applications
2017, Volume 11, Issue 1, pp 58-68
Cover Date
2017-02-30
DOI
10.14357/19922264170105
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
information system; mixed probability models; moving separation of mixtures; statistical data analysis; extremal values; noisy data; threshold; Peak Over Threshold; Pickands - Balkema - de Haan theorem; Renyi theorem; online software; matrix computing
Authors
A. K. Gorshenin
Author Affiliations
Institute of Informatics Problems, Federal Research Center “Computer Sciences and Control” of the Russian
Academy of Sciences, 44-2 Vavilov Str.,Moscow 119333, Russian Federation
|