Informatics and Applications
2017, Volume 11, Issue 1, pp 11-19
CLASSIFICATION BY CONTINUOUS-TIME OBSERVATIONS IN MULTIPLICATIVE NOISE I: FORMULAE FOR BAYESIAN ESTIMATE
Abstract
The two-part paper is devoted to the estimation of a finite-state random vector given the continuous-time noised observations. The key feature is that the observation noise intensity is a function of the estimated vector that makes useless the known results in the optimal filtering. The estimate is obtained both in the explicit integral form and as a solution to a stochastic differential system with some jump processes in the right-hand side.
[+] References (16)
- Bar-Shalom, Y., X. Li, and T. Kirubarajan. 2004. Estimation
with applications to tracking and navigation: Theory,
algorithms and software. New York, NY: John Wiley. 548p.
- Liu, S., T. Basar, and R. Srikant. 2008. TCP-Illinois: A loss- and delay-based congestion control algorithm for high-speed networks // Perform. Evaluation, 2008. Vol. 65. No. 6. P. 417-440.
- Ait-Sahalia Y. and Jacod J. High-frequency financial econometrics. - Princeton, NJ, USA: Princeton University Press, 2014. 688 p.
- Whitt, W. Stochastic-process limits: An introduction to stochastic-process limits and their application to queues. - New York, NY, USA: Springer, 2002. 602 p.
- Elliott, R.J., W.P. Malcolm, and A.H. Tsoi. Robust parameter estimation for asset price models with Markov modulated volatilities // J. Econ. Dyn. Control, 2003. Vol. 27. No. 8. P. 1391-1409.
- Rajasekaran P., Satyanarayana N., Srinath M. Optimum linear estimation of stochastic signals in the presence of multiplicative noise//IEEE Trans. Aero. Elec. Sys., 1971. Vol. 7. No. 5. P. 462-468.
- McLane P. J. Optimal linear filtering for linear systems with state-dependent noise//Int. J. Control, 1969. Vol. 10. No. 1. P. 41-51.
- Crisan D., Kouritzin M., and J. Xiong. Nonlinear filtering with signal dependent observation noise // Electron. J. Probab., 2009. Vol. 14. P. 1863-1883.
- Cvitanic J., Rozovskii B., Zaliapin I. Numerical estimation of volatility values from discretely observed diffusion data//J. Comput. Financ., 2006. Vol. 9. No. 4. P 1-36.
- Panda M., Vu H.L., Mandjes M., Pokhrel S.R. Performance analysis of TCP NewReno over a cellular last-mile:
Buffer and channel losses // IEEE Trans. Mobile Comput., 2015. Vol. 14. No. 8. P 1629-1643.
- Liptser, R. Sh., and A. N. Shiryayev. 1989. Theory of martingales. New York, NY: Springer. 812 p.
- Stoyanov, J. 1987. Counterexamples in probability. New York, NY: John Wiley. 313 p.
- Takeuchi, Y., and H. Akashi. 1985. Least-squares state estimation of systems with state-dependent observation noise. Automatica 21(3):303-313.
- Joannides, M., andF LeGland. 1997. Nonlinear filtering with continuous time perfect observations and nonin- formative quadratic variation. 36th IEEE Conference on Decision and Control Proceedings. New York, NY: IEEE. 1645-1650.
- Liptser, R. Sh., and A. N. Shiryayev. 2001. Statistics of ran-dom processes: I. General theory. Berlin: Springer. 427 p.
- Magnus, J., and H. Neudecker. 1988. Matrix differential calculus with applications in statistics and econometrics. New York, NY: John Wiley. 424 p.
[+] About this article
Title
CLASSIFICATION BY CONTINUOUS-TIME OBSERVATIONS IN MULTIPLICATIVE NOISE I: FORMULAE FOR BAYESIAN ESTIMATE
Journal
Informatics and Applications
2017, Volume 11, Issue 1, pp 11-19
Cover Date
2017-02-30
DOI
10.14357/19922264170102
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
Bayesian estimate; optimal filtering; stochastic differential system; random jump process; multiplicative noise
Authors
A. V. Borisov
Author Affiliations
Institute of Informatics Problems, Federal Research Center “Computer Sciences and Control” of the Russian
Academy of Sciences, 44-2 Vavilov Str.,Moscow 119333, Russian Federation
|