Informatics and Applications
2016, Volume 10, Issue 4, pp 46-56
REGIME SWITCHING DETECTION FOR THE LEVY DRIVEN ORNSTEIN-UHLENBECK PROCESS USING CUSUM METHODS
- A. V. Chertok
- A. I. Kadaner
- G. T. Khazeeva
- I. A. Sokolov
Abstract
The article considers using a trending Ornstein-Uhlenbeck process, driven by a Levy process, for modeling financial time series. The authors demonstrate that the Levy driven model gives more flexibility to describe financial time series than the simple classical model. In particular, the Levy driven model allows modeling distributions with heavy tails, which is a common property of time series in real applications. The authors describe efficient methods for estimating model parameters using such methods as OLS (ordinary least squares) and RLS (regularized least squares). The article also solves the regime switching problem in a real time data stream. The authors built an algorithm based on CUSUM (CUmulative SUM) methods that is capable of determining regime switches consecutively as they happen online and keep model parameters up to date. Solution of the regime switching problem is important in real applications, since the dynamics of real systems tend to change over time under the influence of external factors.
[+] References (21)
- Brigo, D., A. Dalessandro, M. Neugebauer, and F. Triki. 2007. A stochastic processes toolkit for risk management. London: King's College London. Working paper. 48 p.
- Ornstein, L. S., and G. E. Uhlenbeck. 1930. On the theory of the Brownian motion. Phys. Rev. 36(5):823.
- Vasicek, O. 1977. An equilibrium characterization of the term structure. J. Financ. Econ. 5(2):177-188.
- Cox, J. C., E. Ingersoll, Jr., and S. A. Ross. 1985. A theory of the term structure of interest rates. Econometrica 53(2):385-407.
- Garbaczewski, P., and R. Olkiewicz. 2000. Ornstein- Uhlenbeck-Cauchy process. J. Math. Phys. 41:6843- 6860.
- Finlay, R. 2009. The variance gamma (VG) model with long range dependence: A model for financial data incorporating long range dependence in squared returns. Sydney, Australia: University of Sydney, School of Mathematics and Statistics. PhD Thesis. 144 p.
- Kuzmina, A.V. 2011. Modelirovanie normal'nogo obratnogo gaussovskogo protsessa i otsenivanie ego pa- pametrov [Normal inverse Gaussian distribution modeling and its parameters estimation]. Vestnik Belorusskogo gosudarstvennogo universiteta. Ser. 1: Fizika. Matematika. Informatika [Herald of the Belarusian State University Ser. 1: Physics. Mathematics. Informatics] 2:133-136.
- Protter, P. 1990. Stochastic integration and differential equations. Heidelberg: Springer-Verlag. 415 p.
- Sato, K. I. 1999. Levy processes and infinitely divisible dis-tributions. Cambridge: Cambridge University Press. 500 p.
- Barndorff-Nielsen, O. E., and N. Shephard. 2001. Non- Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J. Roy. Stat. Soc. B 63:167-241.
- Taufer, E., and N. Leonenko. 2008. Simulation of Levy- driven Ornstein-Uhlenbeck processes with given marginal distribution. Comput. Stat. Data An. 53:2427-2437.
- Madan, D.B., and E. Seneta. 1990. The VG model for share market returns. J. Bus. 63:511-524.
- Madan, D. B, P. P. Carr, and E. C. Chang. 1998. The variance gamma process and option pricing. Eur. Finance Rev. 2:79-105.
- Barndorff-Nielsen, O.E. 1997. Normal inverse Gaussian distributions and stochastic volatility modeling. Scand. J. Stat. 24(1):1-13.
- Rydberg, H. 1997. The normal inverse Gaussian Levy process: Simulation and approximation. Commun. Stat. Stochastic Models 13(4):887-910.
- Barndorff-Nielsen, O. E. 1998. Processes of normal inverse Gaussian type. Financ. Stoch. 2:41-68.
- Haykin, S. 1996. Adaptive filter theory. 3rd ed. Upper Saddle River, NJ: Prentice Hall. 989 p.
- Appel, U., and A. V. Brandt. 1983. Adaptive sequential segmentation of piecewise stationary time series. Inform. Sci. 29:27-56.
- Gustafsson, F 1996. The marginalized likelihood ratio test for detecting abrupt changes. IEEE Trans. Automat. Contr. 41:66-78.
- Kay, S. 1993. Fundamentals of statistical signal processing. Vol. I. Estimation theory. Upper Saddle River, NJ: Prentice Hall. 625 p.
- Page, E. S. 1961. Cumulative sum control chart. Technometrics 3:1-9.
[+] About this article
Title
REGIME SWITCHING DETECTION FOR THE LEVY DRIVEN ORNSTEIN-UHLENBECK PROCESS USING CUSUM METHODS
Journal
Informatics and Applications
2016, Volume 10, Issue 4, pp 46-56
Cover Date
2016-12-30
DOI
10.14357/19922264160405
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
random process; mean-reverting process; Ornstein-Uhlenbeck process driven by Levy process; trending Ornstein-Uhlenbeck process; regime switch; change point detection; CUSUM algorithm
Authors
A. V. Chertok , ,
A. I. Kadaner , ,
G. T. Khazeeva , and I. A. Sokolov
Author Affiliations
Faculty of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, 1-52 Leninskiye Gory, GSP-1, Moscow 119991, Russian Federation
Sberbank of Russia, 19 Vavilov Str., Moscow 117999, Russian Federation
Faculty of Mechanics and Mathematics, M.V. Lomonosov Moscow State University, Main Building, Leninskiye Gory, GSP-1, Moscow 119991, Russian Federation
Institute of Informatics Problems, Federal Research Center “Computer Sciences and Control” of the Russian
Academy of Sciences, 44-2 Vavilov Str.,Moscow 119333, Russian Federation
|