Informatics and Applications
2016, Volume 10, Issue 2, pp 70-79
ABOUT THE OPTIMAL THRESHOLD OF QUEUE LENGTH IN A PARTICULAR PROBLEM OF PROFIT MAXIMIZATION IN THE M/G/1 QUEUING SYSTEM
- Ya. M. Agalarov
- M. Ya. Agalarov
- V. S. Shorgin
Abstract
The paper considers the problem of maximizing the average profit per time in the M/G/1 system on the set of access restriction stationary threshold strategies with one "switch point." Profit in the described model is defined as the following measures: service fee, hardware maintenance fee, fine for service delay, fine for unhandled requests, and fine for system idle. The conditions of existence of optimal and finite threshold values are obtained.
The method and the algorithm for calculating the lower bound for the optimal threshold and corresponding value of maximal profit per time are proposed. The auxiliary problem of maximizing the system profit, averaged by number of handled requests on the set of the considered threshold strategies, is solved. The necessary and sufficient conditions of existence of solution of the auxiliary problem are found. The method and algorithm for its solution are proposed.
[+] References (10)
- Welzl, M. 2005. Network congestion control. New York, NY: Wiley. 282 p.
- Pechinkin, A. V., and R. V. Razumchik. 2015. Vremyaprebyvaniya v razlichnykh rezhimakh sistemy obsluzhivaniya s neordinarnymi puassonovskimi vkhodyashchimi potoka- mi, rekurrentnym obsluzhivaniem i gisterezisnoy politikoy [First passage times between modes in the queueing system with batch Poisson arrivals, general service, and hys
teresis policy]. Informatsionnye Protsessy [Inform. Proc.] 15(3):324-336.
- Nino-Mora, J. 2006. Restless bandit marginal productivity indices, diminishing returns, and optimal control of make-to-order/make-to-stock M/G/1 queues. Math. Oper. Res. 31(1):50-84.
- Zhernovyy, Yu.V. 2010. Reshenie zadach optimal'nogo sinteza dlya nekotorykh markovskikh modeley ob- sluzhivaniya [Solution of optimum synthesis problem for some Markov models of service]. Informatsionnye Protsessy [Inform. Proc.] 10(3):257-274.
- Konovalov, M. G. 2013. Ob odnoy zadache optimal'nogo upravleniya nagruzkoy na server [About one task of over-load control]. Informatika i ee Primeneniya - Inform. Appl. 7(4):34-43.
- Agalarov, Ya. M. 2015. Porogovaya strategiya ogranicheniya dostupa k resursam v SMO M/D/1 s funktsiey shtrafov za nesvoevremennoe obsluzhivanie zayavok [The threshold strategy for restricting access in the M/D/1 queueing system with penalty function for late service]. Informatika i ee Primeneniya - Inform. Appl. 9(3): 56-65.
- Grishunina, Yu. B. 2015. Optimal'noe upravlenie ochered'yu v sisteme M/G/ 1/to s vozmozhnost'yu ogranicheniya priema zayavok [Optimal control of queue in the M/G/1/TO system with possibility of customer admission restriction]. Avtomatika i Telemekhanika [Au-tomation Remote Control] 3:79-93.
- Karlin, S. 1968. A first course in stochastic processes. New York, N.Y - London: Academic Press. 502 p.
- Bocharov, P.P., and A.V. Pechinkin. 1995. Teoriya massovogo obsluzhivaniya [Queueing theory]. Moscow: RUDN. 529 p.
- Mine, H., and S. Osaki. 1970. Markovian decision processes. New York, NY: American Elsevier Publishing Co. 142 p.
[+] About this article
Title
ABOUT THE OPTIMAL THRESHOLD OF QUEUE LENGTH IN A PARTICULAR PROBLEM OF PROFIT MAXIMIZATION IN THE M/G/1 QUEUING SYSTEM
Journal
Informatics and Applications
2016, Volume 10, Issue 2, pp 70-79
Cover Date
2016-05-30
DOI
10.14357/19922264160208
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
queuing system; threshold strategy; optimization
Authors
Ya. M. Agalarov , M. Ya. Agalarov ,
and V. S. Shorgin
Author Affiliations
Institute of Informatics Problems, Federal Research Center “Computer Sciences and Control” of the Russian
Academy of Sciences, 44-2 Vavilov Str.,Moscow 119333, Russian Federation
PromsvyazBank OJSC, 10 Smirnovskaya Str., Moscow 109052, Russian Federation
|