Informatics and Applications
2015, Volume 9, Issue 4, pp 37-47
ANALYTICAL MODELING OF PROCESSES IN DYNAMICAL SYSTEMS WITH CYLINDRIC BESSEL NONLINEARITIES
Abstract
Methods of analytical modeling (MAM) for processes in dynamical systems with complex Bessel nonlinearities with harmonically and stochastically wide and narrow band disturbances are given. Neccessary elements of the cylindric Bessel functions theory and complex Bessel nonlinearities are presented. Methodological and algorithmical support for MAM based on the statistical linearization method (SLM) and the normal approximation method for wide-band stochastic processes (white noise) is developed. Pecularities of MAM for harmonical and narrow band stochastic processes are discussed. Test examples of one-dimensional systems with additive and multiplicative noises and Bessel nonlinearities and for Bessel oscillator with various disturbances are given. Conclusions and some generalizations are mentioned.
[+] References (15)
- Sinitsyn, I. N. 2013. Parametricheskoe statisticheskoe i analiticheskoe modelirovanie raspredeleniy v nelineynykh stokhasticheskikh sistemakh na mnogoobra- ziyakh [Parametrical statistical and analytical modeling of distributions in nonlinear stochastic systems on manifolds]. Informatika i ee Primeneniya - Inform. Appl. 7(2):4-16.
- Sinitsyn, I. N., and V. I. Sinitsyn. 2014. Analiticheskoe modelirovanie normal'nykh protsessov v stokhasticheskikh sistemakh so slozhnymi nelineynostyami [Analytical modeling of normal processes in stochastic systems with complex nonlinearities]. Informatika i ee Primeneniya - Inform. Appl. 8(3):12-18.
- Sinitsyn, I. N., V. I. Sinitsyn, I. V. Sergeev, V. V. Belousov, and V. S. Shorgin. 2014. Matematicheskoe obespechenie analiticheskogo modelirovaniya stokhasticheskikh sistem so slozhnymi nelineynostyami [Mathematical software tools for analytical modeling in stochastic systems with complex nonlinearities]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 24(3):4-17.
- Sinitsyn, I. N., V. I. Sinitsyn, and E. R. Korepanov. 2015. Modelirovanie protsessov v stokhasticheskikh sistemakh so slozhnymi transtsendentnymi nelineynostyami [Modeling of normal processes in stochastic systems with complex transcendental nonlinearities]. Informatika i ee Primeneniya - Inform. Appl. 9(2):23-29.
- Grey, E., and G. Met'yuz. 1953. Funktsii Besselya i ikh prilozheniya kfizike i mekhanike. - Moscow: IL. 371 p.
- Gradshteyn, I. S., and I. M. Ryzhik. 1963. Tablitsy inte- gralov, summ, ryadov i proizvedeniy [Tables of integrals, sums, series and products]. Moscow: GIFML. 1100 p.
- Abramovich, M., and I. Stigan, eds. 1979. Spravochnik po spetsial'nym funktsiyam [Handbook of mathematical functions]. Moscow: Nauka. 832p.
- Sinitsyn, I. N., and V. I. Sinitsyn. 2013. Lektsii po normal'noy i ellipsoidal'noy approksimatsii raspredeleniy
v stokhasticheskikh sistemakh [Lectures on normal and ellipsoidal approximation of distributions in stochastic systems]. Moscow: TORUS PRESS. 488 p.
- Pugachev, V. S., and I. N. Sinitsyn. 1987. Stochastic dif-ferential systems. Analysis and filtering. Chichester - New York, NY: Jonh Wiley. 549 p.
- Pugachev, V. S., and I. N. Sinitsyn. 2001. Stochastic systems. Theory and applications. Singapore: World Scientific. 908 p.
- Popov, B.A., and G. S. Tesler. 1984. Vychislenie funktsiy na EVM: Spravochnik [Calculation of functions on the computer: Handbook]. Kiev: Naukova Dumka. 599 p.
- Sveshnikov, A. A. 1968. Prikladnye metody teorii sluchaynykh funktsiy [Applied methods in theory of random functions]. Moscow: Nauka. 462 p.
- Sinitsyn, I. N. 2015. Metody momentov v zadachakh analiticheskogo modelirovaniya raspredeleniy v ne- lineynyh stokhasticheskikh sistemakh na mnogoobra- ziyakh [Moments methods for analytical modeling of stochastic systems on manifolds]. Sistemy i Sredstva Infor-matiki - Systems and Means of Informatics 25(3):24-43.
- Sinitsyn, I. N. 2015. Analiticheskoe modelirovanie raspre-deleniy metodom ortogonal'nykh razlozheniy v neliney- nykh stokhasticheskikh sistemakh na mnogoobraziyakh [Analytical modeling in stochastic systems on manifolds based on orthogonal expansions]. Informatika i ee Prime-neniya - Inform Appl. 9(3):17-24.
- Sinitsyn, I. N. 2015. Primenenie ortogonal'nykh razlo- zheniy dlya analiticheskogo modelirovaniya mnogomer- nykh raspredeleniy v nelineynykh stokhasticheskikh sis- temakh na mnogoobraziyakh [Applications of orthogonal expansions for analytical modeling of multidimensional distributions in stochastic systems on manifold]. Sistemy
i Sredstva Informatiki - Systems and Means of Informatics 25(3):4-23.
[+] About this article
Title
ANALYTICAL MODELING OF PROCESSES IN DYNAMICAL SYSTEMS WITH CYLINDRIC BESSEL NONLINEARITIES
Journal
Informatics and Applications
2015, Volume 9, Issue 4, pp 37-47
Cover Date
2015-11-30
DOI
10.14357/19922264150404
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
Bessel nonliearity; Bessel oscillator; complex Bessel nonlinearity; Gibbs formula; harmonical process; Kummer function; method of analytical modeling; narrow band stochastic processes; normal approximation method (NAM); statistical linearization method (SLM); stochastic system on manifold (MStS); white noise; wide band stochastic process
Authors
I. N. Sinitsyn
Author Affiliations
Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|