Informatics and Applications
2015, Volume 9, Issue 4, pp 14-28
MODELING OF STATISTICAL REGULARITIES IN FINANCIAL MARKETS BY GENERALIZED VARIANCE GAMMA DISTRIBUTIONS
- V. Yu. Korolev
- A. Yu. Korchagin
- I. A. Sokolov
Abstract
Some aspects of the application of generalized variance gamma distributions for modeling statistical regularities in financial markets are discussed. The paper describes elementary properties ofgeneralized variance gamma distributions as special normal variance-mean mixtures in which mixing distributions are the generalized gamma laws. Limit theorems for sums of a random number of independent random variables are presented that are analogs of the law of large numbers and the central limit theorem. These theorems give grounds for the possibility of using generalized variance gamma distributions as asymptotic approximations. The paper presents
the results of practical fitting of generalized variance gamma distributions to real data concerning the behavior of financial indexes as well as of fitting generalized gamma distributions to the observed intensities of information flows in contemporary financial information systems. The results of comparison of generalized gamma models with generalized hyperbolic models demonstrate the superiority of the former over the latter. The methods for parameter estimation of generalized gamma models are also discussed as well as their application for predicting processes in financial markets.
[+] References (32)
- Barndorff-Nielsen, O.E. 1977. Exponentially decreasing distributions for the logarithm of particle size. Proc. Roy. Soc. Lond.A 353:401-419.
- Barndorff-Nielsen, O.E., J. Kent, and M.M. Sorensen. 1982. Normal variance-mean mixtures and z-distributions. Int. Statist. Rev. 50(2):145-159.
- Barndorff-Nielsen, O. E. 1978. Hyperbolic distributions and distributions of hyperbolae. Scand. J. Statist. 5:151- 157.
- Korolev, V. Yu., and I. A. Sokolov. 2012. Skoshennye raspredeleniya St'yudenta, dispersionnye gamma- raspredeleniya i ikh obobshcheniya kak asimptoticheskie approksimatsii [Skewed Student's distributions, variance gamma distributions and their generalizations as asymptotic approximations]. Informatika i ee Primeneniya - Inform. Appl. 6(1):2-10.
- Stacy, E. W. 1962. A generalization of the gamma distribution. Ann. Math. Stat. 33:1187-1192.
- Laherrere, J., and D. Sornette. 1998. Stretched exponential distributions in nature and economy: "Fat tails" with characteristic scales. Eur. Phys. J. B 2:525-539.
- Malevergne, Y., V. Pisarenko, and D. Sornette. 2005. Empirical distributions of stock returns: Between the stretched exponential and the power law? Quantitative Finance 5:379-401.
- Malevergne, Y., V. Pisarenko, and D. Sornette. 2006. On the power of generalized extreme value (GEV) and generalized Pareto distribution (GDP) estimators for empirical distributions of stock returns. Appl. Financial Economics 16:271-289.
- Antonov, S.N., and S.N. Koksharov. 2006. Ob asimptoticheskom povedenii khvostov masshtabnykh smesey normalnykh raspredeleniy [On asimptotic behavior of tails of normal variance mixtures]. Statisticheskie metody otsenivaniya i proverki gipotez [Statistical methods for estimation and hypothesis validation]. Perm': Perm' University Press.
2-10.
- Korolev, V. Yu. 2013. Obobshchennye giperbolicheskie raspredeleniya kak predel'nye dlya sluchaynykh summ
[Generalized hyperbolic distributions as limiting for random sums] Theory Probab. Appl. 58(1):117-132.
- Gnedenko, B. V., and A. N. Kolmogorov. 1949. Predel'nye raspredeleniya dlya summ nezavisimykh sluchaynykh velichin [Limit distibutions for sums of independent random variables]. Moscow-Leningrag: GITTL. 264 p.
- Zaks, L. M., and V. Yu. Korolev. 2013. Obobshchennye dispersionnye gamma-raspredeleniya kak predel'nye dlya sluchaynykh summ [Generalized variance gamma distri-butions as limiting for random sums]. Informatika i ee Primeneniya - Inform. Appl. 7(1):105-115.
- Korolev, V. Yu. 1994. Skhodimost' sluchaynykh posledovatel'nostey s nezavisimymi sluchaynymy indeksami. I [Convergence of random sequences with independent random indeces. I]. Theory Probab. Appl. 39(2):313-333.
- Korolev, V. Yu. 1995. Skhodimost' sluchaynykh posledovatel'nostey s nezavisimymi sluchaynymy indeksami. II [Convergence of random sequences with independent random indeces. II]. Theory Probab. Appl. 40(4):907-910.
- Bening, V. E., and V. Yu. Korolev. 2002. Generalized Poisson models and their applications in insurance and finance. Utrecht: VSP 456 p.
- Kalashnikov, V. V. 1997. Geometric sums: Bounds for rare events with applications. Dordrecht: Kluwer Academic Publs. 270 p.
- Korolev, V. Yu. 2011. Veroyatnostno-statisticheskie metody dekompozitsii volatil'nosti khaoticheskikh protsessov [Prob-abilistic and statistical methods for the decomposition of volatility of chaotic processes]. Moscow: Moscow Uni-versity Press. 510 p.
- Barndorff-Nielsen, O. E. 1979. Models for non-Gaussian variation, with applications to turbulence. Proc. Roy. Soc. Lond. A 368:501-520.
- Madan, D. B., and E. Seneta. 1990. The variance gamma (V.G.) model for share market return. J. Business 63:511-524.
- Eberlein, E., andU. Keller. 1995. Hyperbolic distributions in finance. Bernoulli 1(3):281-299.
- Prause, K. 1997. Modeling financial data using generalized hyperbolic distributions. Freiburg: Universitat Freiburg, Institut fiir Mathematische Stochastic. Preprint No. 48. 14 p.
- Carr, P. P., D. B. Madan, and E. C. Chang. 1998. The Variance Gamma process and option pricing. Eur. Finance Rev. 2:79-105.
- Eberlein, E., U. Keller, and K. Prause. 1998. New insights into smile, mispricing and value at risk: The hyperbolic model. J. Business 71:371-405.
- Barndorff-Nielsen, O. E. 1998. Processes of normal inverse Gaussian type. Finance Stochastics 2:41-68.
- Eberlein, E., and K. Prause. 1998. The generalized hyperbolic model: Financial derivatives and risk measures. Freiburg: Universitat Freiburg, Institut fir Mathematische Stochastic. Preprint No. 56. 168 p.
- Shiryaev, A. N. 1998. Osnovy stokhasticheskoy finansovoy matematiki. Ň. 1. Fakty. Modeli [Basics of stochastic finan-cial mathematics. Vol. 1. Facts. Models]. Moscow: Fazis. 512 p.
- Eberlein, E. 1999. Application of generalized hyperbolic Levy motions to finance. Freiburg: Universitat Freiburg, Institut fir Mathematische Stochastic. Preprint No. 64. 319-336.
- Barndorff-Nielsen, O. E., P. Btesild, and J. Schmiegel. 2004. A parsimonious and universal description of turbulent velocity increments. Eur. Phys. J. B41:345-363.
- Korchagin, A.Yu., and V.Yu. Korolev. 2015. Prognozirovanie finansovykh riskov s pomoshch'yu modifi-
tsirovannogo setochnogo metoda skol'zyashchego razdeleniya dispersionno-sdvigovykh smesey normal'nykh za-konov [Forecasting financial risks using modified grid method of moving window decomposition of variance- mean normal mixtures]. Vestnik Karagandinskogo Un-ta 78(2):65-74.
- Korolev, V.Yu., and A.Yu. Korchagin. 2014. Modifitsirovannyy setochnyy metod razdeleniya dispersionno- sdvigovykh smesey normal'nykh zakonov [Modified grid- based method for decomposition of variance-mean normal mixtures]. Informatika iee Primeneniya - Inform. Appl. 8(4):11-19.
- Korolev, V.Yu., and A. L. Nazarov. 2010. Razdelenie smesey veroyatnostnykh raspredeleniy pri pomoshchi setochnykh metodov momentov i maksimal'nogo pravdopodobiya [Separation of mixtures using grid moment- based methods and maximum likelihood]. Avtomatika i Telemekhanika [Automatics Telemechanics] 3:98-116.
- Korchagin, A. Yu., and 1.1. Yaroshenko. 2015. O prakticheskom ispol'zovanii modifitsirovannogo setochnogo metoda razdeleniya dispersionno-sdvigovykh smesey nor-mal'nykh zakonov [On practical usage of modified grid method of decomposition of normal variance-mean mix-tures.] Informatika i ee Primeneniya - Informatics Appl. 9(1):2-10.
[+] About this article
Title
MODELING OF STATISTICAL REGULARITIES IN FINANCIAL MARKETS BY GENERALIZED VARIANCE GAMMA DISTRIBUTIONS
Journal
Informatics and Applications
2015, Volume 9, Issue 4, pp 14-28
Cover Date
2015-02-30
DOI
10.14357/19922264150402
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
random sum; normal mixture; normal variance-mean mixture; generalized hyperbolic distribution; generalized variance-gamma distribution; generalized gamma distribution; law of large numbers; central limit theorem
Authors
V. Yu. Korolev , ,
A. Yu. Korchagin , and I. A. Sokolov
Author Affiliations
Faculty of Computational Mathematics and Cybernetics, M.V. Lomonosov Moscow State University,
1-52 Leninskiye Gory, GSP-1, Moscow 119991, Russian Federation
Institute of Informatics Problems, Federal Research Center “Computer Sciences and Control” of the Russian
Academy of Sciences, 44-2 Vavilov Str.,Moscow 119333, Russian Federation
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|