Informatics and Applications
2015, Volume 9, Issue 3, pp 72-84
HIGHER-ORDER ASYMPTOTIC EXPANSIONS OF UNBIASED ESTIMATORS AND THEIR VARIANCES ON THE ONE-PARAMETER EXPONENTIAL FAMILY MODEL
Abstract
The paper considers a model of duplicate sampling with the fixed size n from a distribution belonging to the natural one-parameter exponential family A limiting behavior of the uniformly minimum variance unbiased estimator (UMVUE) of the given parametric function and the UMVUE variance of this estimator is studied in the case of infinite size of the sample. Higher-order asymptotic expansions are obtained for functions defining unbiased estimators and variances of these estimators. The results are presented for both the canonical parameterization and the mean parameterization.
[+] References (17)
- Voinov, V. G., and M. S. Nikulin. 1989. Nesmeshchennye otsenki i ikh primeneniya [Unbiased estimators and their applications]. Moscow: Nauka. 440 p.
- Portnoy, S. 1977. Asymptotic efficiency of minimum variance unbiased estimators. Ann. Stat. 5(3):522-529.
- Lopez-Blazquez, F, andB. Salamanca-Mino. 2002. Limit distribution of unbiased estimators in natural exponential families. Statistics 14(4):329-338.
- Blazquez, F L., and D. G. Rubio. 2003. Unbiasedestima- tion in the multivariate natural exponential family with simple quadratic variance function. J. Multivariate Anal. 86:1-13.
- Morris, C. N. 1982. Natural exponential families with quadratic variance functions. Ann. Stat. 10(1):65-80.
- Hwang, T.-Y., and C.-Y Hu. 1990. More comparisons of MLE with UMVUE for exponential families. Ann. Inst. Statist. Math. 42(1):65-75.
- Chichagov, V.V. 2002. Ob asimptoticheskom povedenii nesmeshchennykh otsenok veroyatnostey dlya reshetchatykh raspredeleniy, dostatochnoy statistikoy ko- torykh yavlyaetsya srednee [On asymptotic behavior of unbiased probability estimators for lattice distributions with the mean as a sufficient statistic]. Statisticheskie Metody Otsenivaniya i Proverki Gipotez: Mezhvuzovskiy Sbornik Nauchnykh Trudov [Statistical methods for estimating and hypothesis testing: Interuniversity Collection of Research Papers]. Perm. 16:106-120.
- Chichagov, V. V. 2004. Concerning asymptotic normality of a class of unbiased estimators in the case of absolutely continuous distributions. Statistical methods of estimation and testing of hypotheses. J. Math. Sci. 119(3):336-341.
- Petrov, V.V. 1972. Summy nezavisimykh sluchaynykh velichin [Sums of independent random variables]. Moscow: Nauka. 416 p.
- Barndorff-Nielsen, O. E., and D. R. Cox. 1989. Asymptotic techniques for use in statistics. London: Chapman and Hall. 252 p.
- Lumel'skiy, Ya. P., and P. N. Sapozhnikov 1969. Nesmeshchennye otsenki dlya plotnostey raspredeleniy [Unbiased estimators for distribution densities]. Teoriya veroyatnostey i ee primenenie [Theory Probab. Appl.] 14(2):372-380.
- Chichagov, V. V. 2008. Stokhasticheskie razlozheniya nesmeshchennykh otsenok v sluchae odnoparametriche- skogo eksponentsial'nogo semeystva [Stochastic expansions of unbiased estimators for the case of one-parameter exponential family]. Informatika i ee primeneniya - Inform. Appl. 2(2):62-70.
- Chichagov, V.V. 2012. O nesmeshchennoy otsenke vero- yatnosti P(X < Y) v modeli nagruzka-prochnost' [An unbiased estimator of the probability P(X < Y) instress- strength model]. Teoriya veroyatnostey i ee prilozheniya: Tezisy dokl. Mezhdunar. konf., posvyashchennoy 100-letiyu so dnya rozhdeniya B. V. Gnedenko [Conference (International) "Probability Theory and Its Applications" in Commemoration of the Centennial of B. V. Gnedenko]. Moscow: LENAND. 264.
- Chichagov, V. 2013. Asymptotic of the mean absolut error of UNVUE and MLE in the case of one-parameter exponential family lattice distributions. 31st Seminar (International) on Stability Problems for Stochastic Models: Book of Abstracts. Moscow. 13-15.
- J 0rgensen, B. 1997. The theory of dispersion models. Lon-don: Chapman and Hall/CRC. 256 p.
- Brown, L. D. 1986. Fundamentals of statistical exponential families with applications in statistical decision theory. Lecture notes - monograph ser. Hayward, CA: Institute of Mathematical Statistics. Vol. 9. 284 p.
- Petrov, V.V. 1987. Predel'nye teoremy dlya summ nezav-isimykh sluchaynykh velichin [Limit theorems for sums of independent random variables]. Moscow: Nauka. 320 p.
[+] About this article
Title
HIGHER-ORDER ASYMPTOTIC EXPANSIONS OF UNBIASED ESTIMATORS AND THEIR VARIANCES ON THE ONE-PARAMETER EXPONENTIAL FAMILY MODEL
Journal
Informatics and Applications
2015, Volume 9, Issue 3, pp 72-84
Cover Date
2015-02-30
DOI
10.14357/19922264150308
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
natural exponential family; unbiased estimate; asymptotic expansion
Authors
V. V. Chichagov
Author Affiliations
Perm State University, 15 Bukireva Str., Perm 614990, Russian Federation
|