Informatics and Applications
2015, Volume 9, Issue 3, pp 39-54
EXTREMAL INDICES IN A SERIES SCHEME AND THEIR APPLICATIONS
Abstract
The concept of an extremal index of a stationary random sequence is generalized to a series scheme of identically distributed random variables with random series sizes tending to infinity in probability. The new extremal indices are introduced through two definitions generalizing the basic properties of the classical extremal index. Some useful properties of the new extremal indices are proved. The paper shows how the behavior of aggregate activity maxima on random graphs (in information network models) and the behavior of maxima of random particles scores in branching processes (in biological populations models) can be described in terms ofthe new extremal indices. New results on models with copulas and threshold models are obtained. The paper shows that the new indices can take different values for one system and the values greater than one.
[+] References (36)
- Leadbetter, M.R., G. Lindgren, and H. Rootzen. 1986. Extremes and related properties of random sequences and processes. Spinger. 336 p.
- Galambos, J. 1978. The asymptotic theory of extreme order statistics. New York, NY: Wiley. 352 p.
- Embrechts, P., C. Kluuppelberg, and T. Mikosh. 2003. Modelling extremal events for insurance and finance. Springer. 638 p.
- De Haan, L., and A. Ferreira. 2006. Extreme value theory. An introduction. Springer. 420 p.
- Novak, S. Yu. 2014. Predelnye teoremy i otsenki skorosti skhodimosti v teorii ekstremal'nykh znacheniy [Limit theorems and convergence rate estimation in the extreme value theory]. St. Petersburg. D.Sc. Diss. 230 p.
- Markovich, N.M. 2013. Modeling clusters of extreme values. Extremes 17(1):97-125.
- Markovich, N. M. 2013. Quality assessment of the packet transport of peer-to-peer video traffic in high-speed networks. Perform. Evaluation 70(1):28-44.
- Avrachenkov, K., N. M. Markovich, and J. K. Sreedharan. 2014. Distribution and dependence of extremes in network sampling processes. INRIA Research Report No. 8578. 25 p. Available at: http://arxiv.org/abs/1408.2529 (accessed August 7, 2015).
- Goldaeva, A. A. 2014. Tyazhelye khvosty, ekstremumy i klastery lineynykh stokhasicheskikh rekurrentnykh posledovatel'nostey [Heavy tails, extremes, and clusters of linear stochastic recursive sequences]. Moscow: MGU. PhD Diss. 94 p.
- Goldaeva, A. A. 2012. Uniform estimator of the extremal index of stochastic recurrent sequences. Moscow Univ. Math. Bull. 67(2):82-85.
- Goldaeva, A. A. 2013. Extremal indices and clusters it the linear resursive stochastic sequences. Teoriya Veroyatno- stey i ee Primenenia [Theory Probab. Appl.] 58(4):689- 698.
- Choi, H. 2002. Central limit theory and extremes of random fields. Chapel Hill: University of North Carolina at Chapel Hill. PhD Diss.
- Ferreira, H., and L. Pereira. 2008. How to compute the extremal index of stationary random fields. Stat. Probabil. Lett. 78:1301-1304.
- Pereira, L. 2009. The asymptotic location of the maximum of a stationary random field. Stat. Probabil. Lett. 79:2166-2169.
- Savinov, E. A. 2014. Predelnaya teorema dlya maksimuma sluchaynykh velichin, svyazannykh IT-kopulami t-raspre- deleniya St'yudenta [Limit theorem for the maximum of random variables connected by IT-copulas of Student's distribution] Teoriya VeroyatnosteyieePrimenenia [Theory Probab. Appl.] 59(3):594-602.
- Lebedev, A. V. 2008. Activity maxima in random networks in the heavy tail case. Problems Information Transmission 44(2):156-160.
- Lebedev, A. V. 2011. Maksimumy aktivnosti v bez- masshtabnykh sluchaynykh setyakh s tyazhelymi khvosta- mi [Activity maxima in free-scale random networks with heavy tails]. Informatika i ee Primenenia - Inform. Appl. 5(4):13-16.
- Lebedev, A.V. 2015. Activity maxima in some models of information networks with random weights and heavy tails. Problems Information Transmission 51(1):66-74.
- Pavlov, Yu. L. 2009. On the limit distributions of the vertex degrees of conditional Internet graphs. Discrete Math. Appl. 19(4):349-359.
- Leri, M. M. 2011. Ob odnoy statisticheskoy zadache dlya sluchaynykh grafov internet-tipa [On a statistical problem for random Internet-type graphs]. Informatika i ee Primenenia - Inform. Appl. 5(3):34-40.
- Raigorodskii, A. M. 2010. Modeli sluchaynykh grafov i ikh primeneniya [Models of random graphs and their applica-tions]. Trudy MFTI [MIPT Proceedings] 2(4):130-140.
- Van der Hofstad, R. 2014. Random graphs and complex networks. Eindhoven University of Technology Vol. 1. 328 p. Available at: http://www.win.tue.nl/ ^rhofstad/NotesRGCN.pdf (accessed August 7, 2015).
- Seneta, E. 1976. Regularly varying functions. Springer. 116 p.
- Stam, A. J. 1973. Regular variation of the tail of a subordinated probability distribution. Adv. Appl. Probab. 5:308327.
- Lebedev, A. V. 2005. General scheme of maxima of sums of independent random variables and its applications. Mathematical Notes 77(4):503-509.
- Arnold, B. C., and J. A. Villasenor. 1996. The tallest man in the world. Statistical theory and applications. Papers in honor of Herbert A. David. Eds. H. N. Nagaraja, P. K. Sen, and D. F Morrison. New York, NY: Springer-Verlag New York. 81-88.
- Pakes, A. G. 1998. Extreme order statistics on Galton- Watson trees. Metrika 47(1):95-117.
- Lebedev, A. V. 2008. Maxima of random particles scores in Markov branching processes with continuous time. Extremes 11(2):203-216.
- Lebedev, A. V. 2008. Maxima of random properties of par-ticles in supercritical branching processes. Moscow Univ. Math. Bull. 63(5):175-178.
- Lebedev, A. V. 2013. Multivariate extremes of random properties of particles in supercritical branching processes. Teoriya Veroyatnostey i ee Primeneniya [Theory Probab. Appl.] 57(4):678-683.
- Lebedev, A. V. 2010. Asimptoticheskoe povedenie ekstre- mumov sluchaynukh priznakov chastits v vetvyashchikh- sya protsessakh s nasledstvennost'yu [The asymptotic behavior of extremes of random particles scores in branching processes with a heredity] Yaroslavskiy pedagogicheskiy vestnik. Ser. Fiziko-matematicheskie i estestvennye nauki [Yaroslavl Pedagogical Bull. Physics and mathematics and natural sciences] 1:7-14.
- McNeil, A. J., R. Frey, and P. Embrechts. 2005. Quantitative risk management. Princeton University Press. 538 p.
- Nelsen, R. 2006. An introduction to copulas. Springer. 276 p.
- Chatzis, S. P., and Y. Demiris. 2012. The copula echo state network. Pattern Recogn. 45:570-577.
- Feller, W 1971. An introduction to probability and its appli-cations. New York, NY: Wiley. Vol. 2. 668 p.
- Novak, S. Yu. 1992. On the distribution of the maximum of a random number of random variables. Teoriya Veroyatnostey i ee Primeneniya [Theory Probab. Appl.] 36(4):714-721.
[+] About this article
Title
EXTREMAL INDICES IN A SERIES SCHEME AND THEIR APPLICATIONS
Journal
Informatics and Applications
2015, Volume 9, Issue 3, pp 39-54
Cover Date
2015-02-30
DOI
10.14357/19922264150305
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
extremal index; series scheme; random graph; information network; branching process; copula
Authors
A. V. Lebedev
Author Affiliations
Faculty of Mechanics and Mathematics, M. V. Lomonosov Moscow State University, 1-52 Leninskiye Gory, GSP-1, Moscow 119991, Russian Federation
|