Informatics and Applications
2015, Volume 9, Issue 2, pp 39-49
APPLICATION OF THE PUGACHEV-SVESHNIKOV EQUATION TO THE BAXTER OCCUPATION TIME PROBLEM
- S. V. Berezin
- O. I. Zayats
Abstract
The Baxter problem, that is, an occupation (sojourn) time above a moving barrier, for a skew Brownian motion is considered. The latter is known as a model of a semipermeable barrier which permits either movement through it or reflection to the opposite direction with a specified probability The Pugachev-Sveshnikov equation for a continuous Markov process is used to obtain an analytic solution of the problem. The generic method to solve the Pugachev-Sveshnikov equation for occupation-time type problems involves its reduction to a certain Riemann boundary value problem. This problem is solved, and the occupation time probability density function is derived.
Along the way, some additional characteristics of the skew Brownian motion are obtained such as the first passage time, nonexceedance probability, occupation time moments, and some other characteristics.
[+] References (27)
- Lyuu, Y. D. 2001. Financial engineering and computation. 1st ed. Cambridge: Cambridge University Press. 627 p.
- Cohen, J. W., and G. Hooghiemstra. 1981. Brownian ex-cursion, the M/M/1 queue and their occupation times. Math. Oper. Res. 6(4):608-629.
- Berman, S.M. 1992. Sojourn and extremes of stochastic processes. Belmond: CRC Press. 320 p.
- Borodin, A. N. 2013. Sluchaynyeprotsessy [Stochasticpro-cesses]. St. Petersburg: Lan'. 640 p.
- Feller, W 1966. An introduction to probability theory and its applications. New York, NY: Wiley. Vol. II. 626 p.
- Korpas, A. K. 2006. Occupation times of continuous Markov processes. Ph.D. Thesis. Bowling Green: Bowling Green State University. 92 p.
- Levy, P 1939. Sur une probleme de Marcinkiewicz. Comptes rendus Academie sciences Paris 208:319-321, errata p. 776.
- Akahori, J. 1995. Some formulae for a new type of path- dependent option. Ann. Appl. Probab. 5(2):383-388.
- Dassios, A. 1995. The distribution of the quantile of a Brownian motion with drift and the pricing of related path-dependent options. Ann. Appl. Probab. 5(2):389- 398.
- Yor, M. 1995. The distribution of Brownian quantiles. J. Appl. Probab. 32:405-416.
- Takacs, L. 1996. On a generalization of the arc-sine law. Ann. Appl. Probab. 6(3):1035-1040.
- Pechtl, A. 1999. Distribution of occupation times of Brow-nian motion with drift. J. Appl. Math. Decision Sci. 3:41- 62.
- Baxter, G. 1956. Wiener process distributions ofthe arcsine law type. Proc. Am. Math. Soc. 7:738-741.
- Zayats, O. I. 1996. Ob analiticheskom reshenii zadachi Fellera o dlitel'nosti vybrosov [On analytic solution of the Feller problem of upward excursions]. Trudy SPbGTU. Prikladnaya Matematika [SPb Polytechnic Univeristy "Applied Mathematics" Proceedings] 461:92-100.
- Pugachev, V. S., and I. N. Sinitsyn. 1987. Stochastic differential systems. Analysis and filtering. Chechester. 549 p.
- Sveshnikov, A. A. 1970. Primenenie teorii nepreryvnykh markovskikh protsessov k resheniyu nelineynykh zadach prikladnoy giroskopii [Application of the theory of contin-uous Markov processes to solution of nonlinear problems of applied gyroscopy]. Tr. V Mezhdunar. konf po ne- lineynym kolebaniyam [5th Conference (International) on Nonlinear Vibrations Proceedings]. Kiev. 3:659-665.
- Sveshnikov, A. A., and S. S. Rivkin. 1974. Veroyatnostnye metody v prikladnoy teorii giroskopov [Probabilistic meth-ods in the theory of gyroscopy]. Moscow: Nauka. 536 p.
- Zayats, O. I. 2013. Primenenie uravneniya Pugacheva- Sveshnikova k issledovaniyu kusochno-lineynykh sto- khasticheskikh sistem, lineynykh v poluprostranstvakh [Analysis of piecewise linear stochastic systems in half-spaces by means of the Pugachev-Sveshnikov equation]. Nauchno-Tekhnicheskie Vedomosti SPbGPU, Fiziko- MatematicheskieNauki [St. Petersburg State Polytechnical University J. Physics and Mathematics] 4(1):128-142.
- Zayats, O. I., and S.V. Berezin. 2013. Primenenie uravneniya Pugacheva-Sveshnikova k issledovaniyu kusochno-lineynykh stokhasticheskikh sistem, lineynykh v chetvertyakh prostranstva [Analysis of piecewise linear stochastic systems in quarter-spaces by means of the Pugachev-Sveshnikov equation]. Nauchno-tekhnicheskie Vedomosti SPbGPU. Informatika. Telekommunikatsii. Up- ravlenie [St. Petersburg State Polytechnical University J. Computer Science. Telecommunication and Control Systems] 6:87-101.
- Caughey, T. K., and J. K. Dienes. 1961. Analysis of non-linear first order system with a white noise input. J. Appl. Phys. 32(11):2476-2479.
- Zayats, O. I. 1999. Reshenie zadachi Fellera dlya vinerovskogo protsessa s postoyannym snosom [Solution of the Feller problem for a Wiener process with a constant drift]. Trudy SPbGTU. Prikladnaya Matematika [SPb Polytechnic Univeristy "Applied Mathematics" Proceed-ings]. 477:67-72.
- Ito, K., and H. P. McKean. 1963. Brownian motion on a half-line. Illinois J. Math. 7:181-231.
- Lejay, A. 2006. On the constructions ofthe skew Brownian motion. Probab. Surveys 3:413-466.
- Le Gall, J.-F. 1984. One-dimensional stochastic differential equations involving the local times of the unknown process. Stochastic analysis and application. Eds. A. Truman and D. W. Williams. Lecture notes in mathematics ser. Berlin-Heidelberg: Springer. 1095:51-82.
- Appuhamillage, T, V. Bokil, E. Thomann, E. Waymire, and B. Wood. 2011. Occupation and local times for skew Brownian motion with applications to dispersion across an interface. Annals Appl. Pobab. 21(1):183-214.
- Lavrent'ev, M.A., and B.V. Shabat. 1965. Metody teorii funktsii kompleksnogo peremennogo [Methods of the theory of functions of a complex variable]. Moscow: Nauka. 716 p.
- Borodin, A. N., and P Salminen. 1996. Handbook of Brownian motion. Facts and formulae. Probability and its applications. Basel: Birkhauser. 462 p.
[+] About this article
Title
APPLICATION OF THE PUGACHEV-SVESHNIKOV EQUATION TO THE BAXTER OCCUPATION TIME PROBLEM
Journal
Informatics and Applications
2015, Volume 9, Issue 2, pp 39-49
Cover Date
2015-02-30
DOI
10.14357/19922264150205
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
Markov process; Pugachev equation; Pugachev–Sveshnikov equation; Riemann boundary value
problem; stochastic mechanics; skew Brownian motion; occupation time; sojourn time
Authors
S. V. Berezin and O. I. Zayats
Author Affiliations
Institute of Applied Mathematics and Mechanics, Peter the Great St. Petersburg State Polytechnic University, 29 Politekhnicheskaya Str., St. Petersburg 195251, Russian Federation
|