Informatics and Applications
2015, Volume 9, Issue 2, pp 14-22
STATIONARY WAITING TIME IN A QUEUEING SYSTEM WITH INVERSE SERVICE ORDER AND GENERALIZED PROBABILISTIC PRIORITY
- L. A. Meykhanadzhyan
- T. A. Milovanova
- R. V. Razumchik
Abstract
The paper considers a single-server queueing system with a buffer of infinite capacity. Customers arrive
according to a Poisson process. Service discipline is LIFO(Last In, FirstOut) with generalized probabilistic priority.
It is assumed that at any instant, the remaining service time of each customer present in the system is known.
Upon arrival of a new customer, its service time is compared with the remaining service time of the customer in
service. As a result of the comparison, one of the following occurs: both customers leave the system; one customer
leaves the system and the other occupies the server; and both customers stay in the system (one of the two occupies
the server). These actions are governed by probabilistic functions. Whenever a customer remains in the system, it
acquires a new (random) service time. The paper proposes the methods for calculating customer’s sojourn time
distribution and busy period (in terms of Laplace–Stieltjes transform) and several performance characteristics.
[+] References (15)
- Meykhanadzhyan, L.A., T.A. Milovanova, A. V. Pechinkin,
and R. V. Razumchik. 2014. Statsionarnye veroyatnosti
sostoyaniy v sisteme obsluzhivaniya s inversionnym
poryadkom obsluzhivaniya i obobshchennym veroyatnostnym
prioritetom [Stationary distribution in a queueing
system with inverse service order and generalized probabilistic
priority]. Informatika i ee Primeneniya . Inform.
Appl. 8(3):16.26.
- Schrage, L. 1968. A proof of the optimality of the shortest
remaining processing time discipline. Oper. Res. 16:687.
690.
- Nagonenko, V.A. 1981. O kharakteristikakh odnoy nestandartnoy
sistemy massovogo obsluzhivaniya [On the
characteristics of one nonstandard queuing system]. I; II.
Izv. AN SSSR. Tekhnich. Kibernet. [Proceedings of the
Academy of Sciences of the USSR. Technical Cybernetics]
(1):187-195; (3):91-99.
- Nagonenko, V. A., and A. V. Pechinkin. 1982. O bol'shoy
zagruzke v sisteme s inversionnym obsluzhivaniem i veroyatnostnym
prioritetom [On high load in the system with
an inversion procedure service and probabilistic priority].
Izv. AN SSSR. Tekhnich. Kibernet. [Proceedings of the
Academy of Sciences of the USSR. Technical Cybernetics]
(1):86-94.
- Pechinkin, A. V. 1983. Ob odnoy invariantnoy sisteme
massovogo obsluzhivaniya [On an invariant queuing system].
Math. Operationsforsch. und Statist. Ser. Optimization
14(3):433-444.
- Nagonenko, V. A., and A. V. Pechinkin. 1984. O maloy
zagruzke v sisteme s inversionnym poryadkom obsluzhivaniya
i veroyatnostnym prioritetom [On low load
in the system with an inversion procedure service and
probabilistic priority]. Izv. AN SSSR. Tekhnich. Kibernet.
[Proceedings of the Academy of Sciences of the USSR.
Technical Cybernetics] (6):82-89.
- Bocharov, P. P., and A. V. Pechinkin. 1995. Teoriya
massovogo obsluzhivaniya [Queueing theory]. Moscow:
RUDN. 529 p.
- Pechinkin, A. V., and I. V. Stalchenko. 2010. Sistema
MAP/G/1/infinity inversionnym poryadkom obsluzhivaniya
i veroyatnostnym prioritetom, funktsioniruyushchaya
v diskretnom vremeni [The MAP/G/1/infinity discrete-time
queueing system with inversive service order and probabilistic
priority]. Vestnik Rossiyskogo Universiteta Druzhby
Narodov. Ser. Matematika. Informatika. Fizika [Bulletin of
Peoples' Friendship University of Russia. Ser. Mathematics.
Information Sciences. Physics] 2:26-36.
- Nair, J., A. Wierman, and B. Zwart. 2010. Tail-robust
scheduling via limited processor sharing. Perform. Evaluation
67(11):978-995.
- Wierman, A., and B. Zwart. 2012. Is tail-optimal scheduling
possible? Oper. Res. 60(5):1249-1257.
- Jerri, A. 1999. Introduction to integral equations with applications.
New York, NY: John Wiley & Sons. 272 p.
- Press, W.H., S.A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. 2007. Numerical recipes. 3rd ed. The Art of
Scientific Computing. 1235 p.
- Polyanin, A.D., and A. V. Manzhirov. 2008. Handbook
of integral equations. Boca Raton–London: Chapman&
Hall /CRC Press. 1108 p.
- Kleinrock, L. 1976. Queueing systems: Vol. II — Computer
applications. New York, NY: Wiley Interscience. 576 p.
- Avi-Itzhak, B., E. Brosh, and H. Levy. 2007. SQF:
A slowdown queueing fairness measure. Perform. Evaluation
64(9):1121–1136.
[+] About this article
Title
STATIONARY WAITING TIME IN A QUEUEING SYSTEM WITH INVERSE SERVICE ORDER AND GENERALIZED PROBABILISTIC PRIORITY
Journal
Informatics and Applications
2015, Volume 9, Issue 2, pp 14-22
Cover Date
2015-02-30
DOI
10.14357/19922264150202
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
queueing system; LIFO; probabilistic priority; general service time
Authors
L. A. Meykhanadzhyan , T. A. Milovanova ,
and R. V. Razumchik ,
Author Affiliations
Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Str., Moscow 117198, Russian Federation
Institute of Informatics Problems, Federal Research Center “Computer Science and Control” of the Russian
Academy of Sciences, 44-2 Vavilov Str.,Moscow 119333, Russian Federation
|