Informatics and Applications
2015, Volume 9, Issue 2, pp 2-13
ON AVAILABILITY OF PARETO EFFECTIVE EQUILIBRIUM SITUATIONS IN COLLECTIVE BEHAVIOR MODELS WITH DATA EXCHANGE
Abstract
Use of network technologies impels investigations of collective behavior models. Processes of decision
making based on data exchange are of utmost interest. For this purpose, strategy axiomatization is proposed.
Information exchange diminishes uncertainty in the processes and models collective efforts to achieve rational
decisions. Rational behavior uses the principles of effectiveness and stability usually contradicting one another.
Rational game solutions’ structure is studied. It is discovered that data exchange allows achieving Pareto
effective situation which is also the equilibrium one. A notion of coalitional stable game issue is introduced.
The situation prevents from forming coalitions and can simultaneously satisfy the property of Pareto effectiveness.
It can also give Nash equilibrium if adequate players’ strategies are used. An expansion of initial game by means of
additional controlling player shows how the effective coalitional stable issue can be achieved.
[+] References (18)
- Howard,N. 1966. Theory ofmeta-games. General Systems
11:187–200.
- Kukushkin, N. S. 1974. Tochki ravnovesiya v metaigrakh
[Equilibria points in meta-games]. Zh. Vychisl. Mat.
Mat.Fiz. [Computational Mathematics and Mathematical
Physics] 14(2):312–320.
- Germeyer, Yu.B. 1976. Igry s neprotivopolozhnymi interesami
[Games with nonantogonistic interests]. Moscow:
Nauka. 326 p.
- Kukushkin, N. S. 1972. Rol’ vzaimnoy informirovannosti
storon v igrakh dvuh lits s neprotivopolozhnymi interesami
[Role of partnersmutual information in two person games
with nonantogonistic interests]. Zh. Vychisl. Mat. Mat. Fiz.
[Computational Mathematics and Mathematical Physics]
8(4):1029–1034.
- Krasovskiy, N.N., and A. I. Subbotin. 1974. Pozitsionnye
differentsial’nye igry [Positional differential games].
Moscow: Nauka. 458 p.
- Gorelik,V.A.,M.A.Gorelov, andA. F.Kononenko. 1991.
Analiz konfliktnykh situatsiy v sistemakh upravleniya [Analysis
of conflict situations in control systems]. Moscow:
Radio i svyaz’. 286 p.
- Petrosyan, L.A., N.A. Zenkevich, and E.A. Semina.
1998. Teoriya igr [Theory of games]. Moscow: Vysshaya
Shkola. 304 p.
- Zhukovskiy, V. I. 1999. Kooperativnye igry pri neopredelennosti
i ikh prilozheniya [Cooperative games under uncertainty
and its applications]. Moscow: Editorial URSS.
336 p.
- Vasin, A.A., and V. V. Morozov. 2005. Teoriya igr i modeli
matematicheskoy ekonomiki [Theory of games and mathematical
economicsmodels]. Moscow: MAKS Press. 272 p.
- Kolesnik, G. V., and N.A. Leonova. 2012. Teoriya igr
v primerakh i zadachakh [Theory of games in examples
and tasks]. Tver’: Tver’ Gos. Univ. 132 p.
- Opoycev, V. I. 1977. Ravnovesie i ustoychivost’ v modelyakh
kollektivnogo povedeniya [Equilibriumand stability in collective
behavior models]. Moscow: Nauka. 248 p.
- Vasil’ev, N. S. 2014. Ispol’zovanie printsipa ravnovesiya
dlya upravleniya marshrutizatsiey v transportnykh setyakh
[Equilibrium principle application to routing control
in packet data-transmission networks]. Informatika i ee
Primeneniya — Inform. Appl 8(1):29–36.
- Vasil’ev, N. S. 2013. Chislennoe reshenie beskoalitsionnykh
matrichnykh igr [Numerical solution of
matrix games without coalitions]. Nauka i obrazovanie:
Elektronnoe nauchno-tehnicheskoe izdanie 8. doi:
10.7463/0813.058774.
- Podinovskiy, V. V., and V.D. Nogin. 1982. Paretooptimal’nye
resheniya mnogokriterial’nykh zadach [Pareto
optimal solutions in multicriteria problems]. Moscow:
Nauka. 256 p.
- Moiseev, N.N. 1975. Elementy teorii optimal’nykh sistem
[Elements of optimal systems theory]. Moscow: Nauka.
527 p.
- Skornyakov, L.A. 1983. Elementy obshchey algebry [Elements
of general algebra].Moscow: Nauka. 272 p.
- Karmanov, V.G., and V. V. Fedorov. 1996. Modelirovanie
v issledovanii operatsiy [Modelling in operations research].
Moscow: Tvema. 102 p.
- Fedorov, V. V. 1979. Chislennye metody maksimina [Numerical
methods of maximin]. Moscow: Nauka. 280 p.
[+] About this article
Title
ON AVAILABILITY OF PARETO EFFECTIVE EQUILIBRIUM SITUATIONS IN COLLECTIVE BEHAVIOR MODELS WITH DATA EXCHANGE
Journal
Informatics and Applications
2015, Volume 9, Issue 2, pp 2-13
Cover Date
2015-02-30
DOI
10.14357/19922264150201
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
game; strategy; situation; game issue; information exchange; dynamics of decision making; axiomatization;
coalition; cooperative game; characteristic function; the best guaranteed result; strategy of punishment;
Pareto effectiveness; Nash equilibrium
Authors
N. S. Vasilyev
Author Affiliations
N. E. Bauman Moscow State Technical University, 5 Baumanskaya 2nd Str.,Moscow 105005, Russian Federation
|