Informatics and Applications
2014, Volume 8, Issue 3, pp 79-89
MATHEMATICAL STATISTICS METHODS AS A TOOL OF TWO-PARAMETRIC MAGNETIC-RESONANCE IMAGE ANALYSIS
- T. V. Yakovleva
- N. S. Kulberg
Abstract
The paper considers the methods of the magnetic-resonance image analysis, based on the solution of the so-called two-parametric task. The elaborated methods provide joint calculation of both statistical parameters - the mathematical expectation of the random value being analyzed and its dispersion, i. e., simultaneous estimation of both the useful signal and the noise. The considered variants of the task solution employ the methods of mathematical statistics: the maximum likelihood method and variants of the method of moments. A significant advantage of the elaborated two-parametric approach consists in the fact that it provides an efficient solution of nonlinear tasks including the tasks of noise suppression in the systems of magnetic-resonance visualization. Estimation of the sought-for parameters is based upon measured samples' data only and is not limited by any a priori suppositions. The paper provides the comparative analysis of the considered methodology's variants and presents the results of the computer simulation providing the statistical characteristics of the estimated parameters' shift and scatter while solving the task by various methods. The presented methods of the Rician signal's two-parametric analysis can be used within new information technologies at the stage of the stochastic values' processing.
[+] References (20)
- Perona, P., and J. Malik. 1990. Scale-space and edge de-tection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intelligence 12(7):629-639.
- Gerig, G., O. Kubler, R. Kikinis, and F. A. Jolesz. 1992. Nonlinear anisotropic filtering of MRI data. IEEE Trans. Med. Imaging 11:221-232.
- Wood, J. C., and K. M. Johnson. 1999. Wavelet packet denoising of magnetic resonance images: Importance of
Rician noise at low SNR. Magnet. Reson. Med. 41(3):631- 635.
- Delakis, I., O. Hammad, and R. I. Kitney. 2007. Wavelet based denoising algorithm for images acquired with parallel magnetic resonance imaging (MRI). Phys. Med. Biol. 52(13):3741-3751.
- Starck, J. L., E. J. Candes, and D. L. Donoho. 2002. The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6):670-684.
- Jianwei, M., and G. Plonka. 2010. The Curvelet transform. IEE Signal Proc. Mag. 27(2):118-133.
- Benedict, T R., and T T Soong. 1967. The joint estima-tion of signal and noise from the sum envelope. IEEE Trans. Inform. Theory IT-13(3):447-454.
- Henkelman, R. M. 1985. Measurement of signal intensi-ties in the presence of noise in MR images. Med. Phys. 12(2):232-233.
- Wang T., and T Lei. 1994. Statistical analysis of MR imaging and its application in image modeling. IEEE Conference (International) Image Processing and Neural Networks Proceedings. I:866-870.
- Gudbjartsson, H., and S. Patz. 1995. The Rician distribu-tion of noisy MRI data. Magnet. Reson. Med. 34:910-914.
- Sijbers, J., A. J. den Dekker, P Scheunders, and D. Van Dyck. 1998. Maximum-likelihood estimation of Rician distribution parameters. IEEE Trans. Med. Imaging 17(3):357-361.
- Carobbi, C. F. M., and M. Cati. 2008. The absolute max-imum of the likelihood function of the Rice distribution: Existence and uniqueness. IEEE Trans. Instrum. Meas. 57(4):682-689.
- Sheil, W. C. 2012. Magnetic resonance imaging (MRI Scan). MedicineNet.com. Retrieved April 27, 2012.
- Rice, S. O. 1944. Mathematical analysis of random noise. Bell Syst. Tech. J. 23:282-322.
- Yakovleva, T.V. 2014. Usloviya primenimosti statistiche- skoy modeli Raysa i raschet parametrov raysovskogo sig- nala metodom maksimuma pravdopodobiya [Conditions of Rice statistical model applicability and estimation of the Rician signal's parameters by maximum likelihood technique]. Komp'yuternye issledovaniya i modelirovanie [Computer Research and Simulation] 6(1):13-25.
- Yakovleva, T.V., and N. S. Kulberg. 2014. Osobennosti funktsii pravdopodobiya statisticheskogo raspredeleniya Raysa [The likelihood function's peculiarities for Rice statistical dictribution]. Dokl. RAS 457(4):394-397.
- Yakovleva, T V, and N. S. Kulberg. 2013. Noise and signal estimation in MRI: Two-parametric analysis of Rice- distributed data by means of the maximum likelihood approach. Am. J. Theor. Appl. Stat. 2(3):67-79.
- Yakovleva, T.V. 2014. Obzor metodov obrabotki magnitno-rezonansnykh izobrazheniy i razvitie novogo dvukhparametricheskogo metoda momentov [Review of MRI processing techniques and elaboration of a new two- parametric method of moments]. Komp'yuternye Issledovaniya i Modelirovanie [Computer Research and Simulation] 6(2):231-244.
- Park, Jr., J. H. 1961. Moments of generalized Rayleigh distribution. Q. Appl. Math. 19(1):45-49.
- Abramovits, Ì., and I. Stigan. 1979. Spravochnikpospetsi- al'nym funktsiyam [Reference book on special functions]. Moscow: Nauka. 832 p.
[+]
About this article
Title
MATHEMATICAL STATISTICS METHODS AS A TOOL OF TWO-PARAMETRIC MAGNETIC-RESONANCE IMAGE ANALYSIS
Journal
Informatics and Applications
2014, Volume 8, Issue 3, pp 79-89
Cover Date
2014-03-31
DOI
10.14357/19922264140309
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
Rice distribution; maximum likelihood method; method of moments; two-parametric analysis; signal-to-noise ratio
Authors
T. V. Yakovleva and N. S. Kulberg
Author Affiliations
Dorodnicyn Computing Center of the Russian Academy of Sciences, 40 Vavilov Str., Moscow 119333, Russian Federation
|